

Kinetix 300 EtherNet/IP Indexing Servo Drives

Catalog Numbers 2097-V31PR0, 2097-V31PR2, 2097-V32PR0, 2097-V32PR2, 2097-V32PR4, 2097-V33PR1, 2097-V33PR3, 2097-V33PR5, 2097-V33PR6, 2097-V34PR3, 2097-V34PR5, 2097-V34PR6

Important User Information

Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication <u>SGI-1.1</u> available from your local Rockwell Automation sales office or online at <u>http://www.rockwellautomation.com/literature/</u>) describes some important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

Allen-Bradley, CompactLogix, ControlFLASH, ControlLogix, Kinetix, MP-Series, TL-Series, RSLogix, SoftLogix, Rockwell Automation, Rockwell Software, Stratix 6000, MicroLogix, and TechConnect are trademarks of Rockwell Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

This manual contains new and updated information. Changes throughout this revision are marked by change bars, as shown to the right of this paragraph.

New and Updated Information

This was a minor revision that includes the addition of linear actuators configuration and updated information encoder capabilities.

Section	Торіс	Page
Chapter 3	Updated the Buffered Encoder Outputs text and the important block.	49
Chapter 5	Updated Analog Input (current scale) range.	94
	Updated the important block.	144
Chanter 6	Updated Analog Input (current scale) range.	149
<u>enapter o</u>	Added Low Pass Filter tip.	140
	Added expected results table to step 13.	152
Chapter 7	Added error code E95.	156
Annondix A	Updated shunt signal names in power wiring examples.	173
<u>Appendix A</u>	Updated interconnect diagram for LDAT-Series linear thrusters.	180
Appendix C	Updated Analog Input (current scale) range.	199

Notes:

Preface

About This Publication	11
Who Should Use This Manual	11
Additional Resources	12

Chapter 1

About the Kinetix 300 Drive System	14
Catalog Number Explanation	16
Agency Compliance	17
CE Requirements	17

Chapter 2

System Design Guidelines 2	0
System Mounting Requirements 2	0
Transformer Selection 2	1
Circuit Breaker/Fuse Selection 2	1
Circuit Breaker/Fuse Specifications	2
Enclosure Selection	3
Power Dissipation Specifications 2	4
Minimum Clearance Requirements 2	5
Electrical Noise Reduction	6
Bonding Drives 2	6
Bonding Multiple Subpanels 2	8
Establishing Noise Zones 2	9
Cable Categories for Kinetix 300 Drive Components 3	1
Noise Reduction Guidelines for Drive Accessories	1
Mount Your Kinetix 300 Drive 3	4

Chapter 3

	•	
Kinetix 300 Drive Connector Data and	Kinetix 300 Drive Connectors and Indicators	36
Feature Descriptions	Safe Torque-off Connector Pinout	37
	I/O Connector Pinout	38
	Motor Feedback (MF) Connector Pinout	39
	Ethernet Communication Connector Pinout	39
	AC Input Power Connector Pinout	40
	Back-up Power Connector Pinout	40
	Shunt Resistor and DC Bus Connector Pinout	40
	Motor Power Connector Pinout	40
	Control Signal Specifications.	41
	Digital Inputs	41
	Digital Outputs	45
	Analog Reference Input	46
	Analog Output.	47
	Master Gearing/Step and Direction Inputs	48

Installing the Kinetix 300 Drive System

Connecting the Kinetix 300 Drive System

. 49
. 50
. 50
. 51
. 52
. 56

Chapter 4

Basic Wiring Requirements	57
Build Your Ówn Cables	58
Route Power and Signal Wiring	58
Determine the Input Power Configuration	58
Three-phase Power Wired to Three-phase Drives	59
Single-phase Power Wired to Single-phase Drives	60
Voltage Doubler Operation.	60
Isolation Transformer in Grounded Power Configurations	61
Three-phase Power Wired to Single-phase Drives	61
Voiding of CE Compliance	63
Grounding Your Kinetix 300 Drive System	64
Ground Your Drive to the System Subpanel	64
Ground Multiple Subpanels	65
Power Wiring Requirements	65
Wiring Guidelines	68
Wiring the Kinetix 300 Drive Connectors	69
Wire the Safe Torque-off (STO) Connector	69
Wire the Back-up Power (BP) Connector	69
Wire the Input Power (IPD) Connector	70
Wire the Motor Power (MP) Connector	71
Apply the Motor Cable Shield Clamp	76
Feedback and I/O Cable Connections	77
Flying-lead Feedback Cable Pin-outs	78
Wiring the Feedback and I/O Connectors	79
Wire the I/O Connector	79
Wire the Low-profile Connector Kit	80
Shunt Resistor Connections	81
Ethernet Cable Connections	82

Chapter 5

MotionView Software Configuration	Drive Organizer and Identification	84
	Motor Category	84
	Synchronous Motor Database	85
	Linear Motor Database	86
	General Category	87
	Communication Categories	91
	Ethernet Communication	91
	Ethernet (CIP) Communication	92

Input/Output Categories
Digital I/O
Analog I/O
Limits Categories
Velocity Limits
Position Limits
Dvnamics Category
Tools Category
Monitor Category
Faults Category
Indexing Category
Index Type Parameter
Action Parameter
Start Index
Abort Indexing
Reset Index
Explicit Messages for Indexing
Homing Category
Homing Methods
Immediate Homing
Absolute Homing
Home to Marker 116
Home Offset 116
Homing Switch
Homing Firmware Algorithm 117
Homing Methods Timing Diagrams
Homing Methods 7, 14
Homing Method 23
Homing Method 25
Homing Method 27
Homing Method 33
Homing Method 34
Homing Method 35
Upgrade Firmware 124

Chapter 6

Keypad Input	126
Status Indicators	127
Configure the Kinetix 300 Drive Ethernet IP Address	128
Ethernet Connection	128
Kinetix 300 Drive Ethernet Port Configuration	128
Current IP Address Ethernet Setting.	129
Configure the IP Address Manually (static address)	129
Configure the IP Address Automatically (dynamic address)	131
Add-on Profiles	132
Configuring the Logix EtherNet/IP Module	132
Configure the Logix Controller	132

Configure and Start Up the Kinetix 300 Drive

Chapter 7

Safety Precautions	153
General Troubleshooting	154
Display Behavior	154
Error Codes	154
Clearing Faults	157
Use Digital Inputs to Clear Faults	157
Use Drive Parameters to Clear Faults	157

Chapter 8

Certification	159
Important Safety Considerations	160
Safety Category 3 Requirements	160
Stop Category Definition	160
Performance Level and Safety Integrity Level (SIL) CL3	160
Description of Operation	161
Functional Proof Tests	161
Troubleshooting the Safe Torque-off Function	162
PFD and PFH Definitions	162
PFD and PFH Data	162
Safe Torque-off Connector Data	163
STO Connector Pinouts	163
Wiring Your Safe Torque-off Circuit	164

Troubleshooting the Kinetix 300 Drive System

Kinetix 300 Drive Safe Torque-off Feature

	European Union Directives164Safe Torque-off Wiring Requirements165Kinetix 300 Drive Safe Torque-off Feature166Safe Torque-off Feature Bypass166Kinetix 300 Drive Safe Torque-off Wiring Diagrams167Safe Torque-off Signal Specifications168Safety Input and Output Schematics169
	Appendix A
Interconnect Diagrams	Interconnect Diagram Notes172Power Wiring Examples173Shunt Resistor Wiring Example175Kinetix 300 Drive/Rotary Motor Wiring Examples176Kinetix 300 Drive/Linear Motor Wiring Examples179Kinetix 300 Drive/Actuator Wiring Examples180Kinetix 300 Drive to MicroLogix Controller Wiring Examples183Kinetix 300 Drive Master Gearing Wiring Example184Motor Brake Currents185System Block Diagrams186
Input and Output Assembly	Appendix BInput and Output Assembly189Output Assembly Examples195Incremental Position Point-to-Point Profile196Velocity Motion Profile196
	Appendix C
Kinetix 300 Drive ID Tag Numbers	Tag Number Descriptions197Index Base Addressing210
	Appendix D
MicroLogix Explicit Messaging	Explicit Messaging Data Types211Explicit Messaging Data Type Examples212DINT Data Type Examples212REAL Data Type Examples213String Data Type Examples214

Appendix E

Overtravel Inputs

Modes of Operation	217
Overtravel Hardware Inputs	218
Operation	219
Overtravel Fault Recovery	220

Appendix F

History of Changes 2	21
----------------------	----

About This Publication	This manual provides detailed installation instructions for mounting, wiring, and troubleshooting your Kinetix [®] 300 drive; and system integration for your drive/ motor combination with a Logix controller.
Who Should Use This Manual	This manual is intended for engineers and technicians directly involved in the installation and wiring of the Kinetix 300 drive and programmers directly involved in operation, field maintenance, and integration of the Kinetix 300 drive.
	If you do not have a basic understanding of the Kinetix 300 drive, contact your local Rockwell Automation sales representative for information on available training courses.

Additional Resources

These documents contain additional information concerning related products from Rockwell Automation.

Resource	Description	
Kinetix 300 Shunt Resistor Installation Instructions, publication 2097-IN002	Information on installing and wiring the Kinetix 300 shunt resistors.	
Kinetix 300 AC Line Filter Installation Instructions, publication 2097-IN003	Information on installing and wiring the Kinetix 300 AC line filter.	
Kinetix 300 I/O Terminal Expansion Block Installation Instructions, publication 2097-IN005	Information on installing and wiring the Kinetix 300 I/O terminal expansion block.	
Kinetix 300 Memory Module Installation Instructions, publication 2097-IN007	Information on installing the Kinetix 300 memory module.	
Kinetix 300 Memory Module Programmer Quick Start, publication 2097-QS001	Information on using the memory module programmer to duplicate the memory module.	
CompactLogix [™] System User Manual User Manual, publication <u>1769-UM011</u>	Provides information about planning, mounting, wiring, and troubleshooting your CompactLogix system.	
ControlLogix [®] Controllers User Manual, publication <u>1756-UM001</u>	Information on installing, configuring, programming, and operating a ControlLogix system.	
ControlFLASH™ Firmware Upgrade Kit User Manual, publication <u>1756-QS105</u>	For ControlFLASH information not specific to any drive family.	
Kinetix Rotary Motion Specifications Technical Data, publication <u>GMC-TD001</u>	Specifications for Kinetix rotary motion products.	
Kinetix Linear Motion Specifications Technical Data, publication <u>GMC-TD002</u>	Specifications for Kinetix linear motion products.	
Kinetix Servo Drives Specifications Technical Data, publication GMC-TD003	Specifications for Kinetix servo drive motion control products.	
Industrial Automation Wiring and Grounding Guidelines, publication <u>1770-4.1</u>	Provides general guidelines for installing a Rockwell Automation industrial system.	
System Design for Control of Electrical Noise Reference Manual, publication <u>GMC-RM001</u>	Information, examples, and techniques designed to minimize system failures caused by electrical noise.	
EMC Noise Management DVD, publication GMC-SP004		
Rockwell Automation Product Certification, website <u>www.rockwellautomation.com/products/certification</u>	For declarations of conformity (DoC) currently available from Rockwell Automation.	
Rockwell Automation Industrial Automation Glossary, publication AG-7.1	A glossary of industrial automation terms and abbreviations.	

You can view or download publications at

<u>http://www.rockwellatuomation.com/literature</u>. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative.

Start

Торіс	Page
About the Kinetix 300 Drive System	14
Catalog Number Explanation	16
Agency Compliance	17

About the Kinetix 300 Drive System

The Kinetix 300 EtherNet/IP indexing servo drive is designed to provide a solution for applications with output power requirements between 0.4...3.0 kW (2...12 A rms).

Table 1 - Kinetix 300 Drive System Overview

Kinetix 300 System Component	Cat. No.	Description
Kinetix 300 EtherNet/IP Indexing Servo Drive	2097-V3 <i>x</i> PR <i>x</i>	Kinetix 300 EtherNet/IP indexing drives with safe torque-off feature are available with 120/240V or 480V AC input power.
AC Line Filters	2090 2097-F <i>x</i>	Bulletin 2090 and Bulletin 2097-Fx AC line filters are required to meet CE with Kinetix 300 drives without an integrated line filter. Bulletin 2097 filters are available in foot mount and side mount.
Shunt Module	2097-R <i>x</i>	Bulletin 2097 shunt resistors connect to the drive and provide shunting capability in regenerative applications.
Terminal block for I/O connector	2097-TB1	50-pin terminal block. Use with IOD connector for control interface connections.
Memory Module Programmer	2097-PGMR	The EPM programmer is used to duplicate the memory and configuration of the Kinetix 300 drives.
Memory Modules 12 Pack	2097-MEM	These removable memory modules are used by the drive to store parameters.
Logix Controller Platform	1769-L23E-xxx 1769-L3xE-xxxx 1768-L4x 1756-L6x 1766-L32xxx 1763-L16xxx	EtherNet/IP interface modules serve as a link between the ControlLogix/CompactLogix/MicroLogix [™] platform and the Kinetix 300 drive system. The communication link uses EtherNet/IP protocol over a copper cable.
RSLogix™ 5000 Software	9324-RLD300ENE	RSLogix 5000 software provides support for programming, commissioning, and maintaining the Logix family of controllers.
Rotary Servo Motors	MP-Series™, TL-Series™	Compatible rotary motors include the MP-Series (Bulletin MPL, MPM, MPF, and MPS) and TL-Series motors.
Linear Stages	MP-Series	Compatible stages include MP-Series (Bulletin MPAS) Integrated Linear Stages.
Linear Actuators	LDAT-Series	Compatible actuators include LDAT-Series (Bulletin LDAT) Integrated Linear Thrusters.
Linear Motors	LDC-Series™, LDL-Series™	Compatible linear motors include LDC-Series and LDL-Series (Bulletin LDC and LDL) Linear Motors.
Electric Cylinders	MP-Series, TL-Series	Compatible electric cylinders include MP-Series and TL- Series (Bulletin MPAR, TLAR, and MPAI) Electric Cylinders.
Cables	Motor/brake and feedback cables	Motor power/brake and feedback cables include SpeedTec and threaded DIN connectors at the motor. Power/brake cables have flying leads on the drive end and straight connectors that connect to servo motors. Feedback cables have flying leads that wire to low-profile connector kits on the drive end and straight connectors on the motor end.
	Communication cables	1585J-M8CBJM-x (shielded) Ethernet cable.

Figure 1 - Typical Kinetix 300 Drive Installation

Catalog Number Explanation

Kinetix 300 drive catalog numbers and descriptions are listed in these tables.

Table 2 - Kinetix 300 Drives (single-phase)

Cat. No.	Input Voltage	Continuous Output Current A (0-pk)	Features
2097-V31PR0	- 120/240V, 1 <i>Ø</i>	2.8	• 120V Doubler mode
2097-V31PR2		5.7	Safe Torque-off
2097-V32PR0	240V, 1Ø	2.8	
2097-V32PR2		5.7	 Integrated AC line filter Safe Torque-off
2097-V32PR4		11.3	

Table 3 - Kinetix 300 Drives (single/three-phase)

Cat. No.	Input Voltage	Continuous Output Current A (0-pk)	Features
2097-V33PR1	120V, 1 Ø 240V, 1 Ø 240V, 3 Ø	2.8	
2097-V33PR3		5.7	Cafa Tarqua aff
2097-V33PR5		11.3	Sale loique-oli
2097-V33PR6]	17.0	

Table 4 - Kinetix 300 Drives (three-phase)

Cat. No.	Input Voltage	Continuous Output Current A (0-pk)	Features
2097-V34PR3		2.8	
2097-V34PR5	480V, 3 Ø	5.7	Safe Torque-off
2097-V34PR6		8.5	

Table 5 - Kinetix 300 Drive Accessories

Cat. No.	Drive Components
2097-F <i>x</i>	AC line filters
2097-TB1	Terminal block for I/O connector
2097-R <i>x</i>	Shunt resistors
2097-PGMR	Memory module programmer
2097-MEM	Memory modules 12 pack

Agency Compliance

If this product is installed within the European Union and has the CE mark, the following regulations apply.

ATTENTION: Meeting CE requires a grounded system, and the method of grounding the AC line filter and drive must match. Failure to do this renders the filter ineffective and may cause damage to the filter. For grounding examples, see <u>Grounding Your Kinetix 300 Drive System</u> on page 64.

For more information on electrical noise reduction, see the System Design for Control of Electrical Noise Reference Manual, publication <u>GMC-RM001</u>.

CE Requirements

To meet CE requirements, these requirements apply:

- Install an AC line filter (Bulletin 2090 or 2097) as close to the drive as possible.
- Use 2090 series motor power cables or use connector kits and terminate the cable shields to the subpanel with clamp provided.
- Use 2090 series motor feedback cables or use connector kits and properly terminate the feedback cable shield. Drive-to-motor power and feedback cables must not exceed 20 m (65.6 ft).
- Install the Kinetix 300 system inside an enclosure. Run input power wiring in conduit (grounded to the enclosure) outside of the enclosure. Separate signal and power cables.
- Segregate input power wiring and motor power cables from control wiring and motor feedback cables. Use shielded cable for power wiring and provide a grounded 360° clamp termination.

See Appendix A on page 171 for interconnect diagrams, including input power wiring and drive/motor interconnect diagrams.

Notes:

Installing the Kinetix 300 Drive System

Торіс	Page
System Design Guidelines	20
Electrical Noise Reduction	
Mount Your Kinetix 300 Drive	

ATTENTION: Plan the installation of your system so that you can perform all cutting, drilling, tapping, and welding with the system removed from the enclosure. Because the system is of the open type construction, be careful to keep any metal debris from falling into it. Metal debris or other foreign matter can become lodged in the circuitry, which can result in damage to components.

System Design Guidelines

Use the information in this section when designing your enclosure and planning to mount your system components on the panel.

For on-line product selection and system configuration tools, including AutoCAD (DXF) drawings of the product, see <u>http://www.ab.com/e-tools</u>.

System Mounting Requirements

- To comply with UL and CE requirements, the Kinetix 300 system must be enclosed in a grounded conductive enclosure offering protection as defined in standard EN 60529 (IEC 529) to IP4X such that they are not accessible to an operator or unskilled person. A NEMA 4X enclosure exceeds these requirements providing protection to IP66.
- The panel you install inside the enclosure for mounting your system components must be on a flat, rigid, vertical surface that won't be subjected to shock, vibration, moisture, oil mist, dust, or corrosive vapors.
- Size the drive enclosure so as not to exceed the maximum ambient temperature rating. Consider heat dissipation specifications for all drive components.
- Segregate input power wiring and motor power cables from control wiring and motor feedback cables. Use shielded cable for power wiring and provide a grounded 360° clamp termination.
- Use high-frequency (HF) bonding techniques to connect the enclosure, machine frame, and motor housing, and to provide a low-impedance return path for high-frequency (HF) energy and reduce electrical noise.
- Use 2090 series motor feedback cables or use connector kits and properly terminate the feedback cable shield. Drive-to-motor power and feedback cables must not exceed 20 m (65.6 ft).

IMPORTANT System performance was tested at these cable length specifications. These limitations are also a CE requirement.

See the System Design for Control of Electrical Noise Reference Manual, publication <u>GMC-RM001</u>, to better understand the concept of electrical noise reduction.

Transformer Selection

The Kinetix 300 drive does not require an isolation transformer for three-phase input power. However, a transformer may be required to match the voltage requirements of the controller to the available service.

To size a transformer for the main AC power inputs, see <u>Circuit Breaker/Fuse</u> <u>Specifications</u> on page 22 and Kinetix Servo Drives Specifications Technical Data, publication <u>GMC-TD003</u>.

IMPORTANT	If using an autotransformer, make sure that the phase to neutral/ground voltages do not exceed the input voltage ratings of the drive.
IMPORTANT	Use a form factor of 1.5 for single and three-phase power (where form factor is used to compensate for transformer, drive, and motor losses, and to account for utilization in the intermittent operating area of the torque speed curve). For example, sizing a transformer to the voltage requirements of catalog

Circuit Breaker/Fuse Selection

The Kinetix 300 drives use internal solid-state motor short-circuit protection and, when protected by suitable branch circuit protection, are rated for use on a circuit capable of delivering up to 100,000 A. Fuses or circuit breakers, with adequate withstand and interrupt ratings, as defined in NEC or applicable local codes, are permitted.

The Bulletin 140M and 140U products are another acceptable means of protection. As with fuses and circuit breakers, you must make sure that the selected components are properly coordinated and meet applicable codes including any requirements for branch circuit protection. When applying the 140M/140U product, evaluation of the short circuit available current is critical and must be kept below the short circuit current rating of the 140M/140U product.

In most cases, class CC, J, L, and R fuses selected to match the drive input current rating will meet the NEC requirements or applicable local codes, and provide the full drive capabilities. Dual element, time delay (slow-acting) fuses should be used to avoid nuisance trips during the inrush current of power initialization.

See Kinetix 300 Drive Power Specifications in Kinetix Servo Drives Specifications Technical Data, publication <u>GMC-TD003</u> for input current and inrush current specifications for your Kinetix 300 drive.

See <u>Circuit Breaker/Fuse Specifications</u> on page 22 for recommended circuit breakers and fuses.

Circuit Breaker/Fuse Specifications

While circuit breakers offer some convenience, there are limitations for their use. Circuit breakers do not handle high current inrush as well as fuses.

Make sure the selected components are properly coordinated and meet acceptable codes including any requirements for branch circuit protection. Evaluation of the short-circuit available current is critical and must be kept below the short-circuit current rating of the circuit breaker.

Use class CC or T fast-acting current-limiting type fuses, 200,000 AIC, preferred. Use Bussmann KTK-R, JJN, JJS or equivalent. Thermal-magnetic type breakers preferred. The following fuse examples and Allen-Bradley[®] circuit breakers are recommended for use with Kinetix 300 drives.

		Main VAC			
Cat. No.	Drive Voltage	Bussmann Fuse	Allen-Bradley Circuit Breaker ⁽¹⁾		
			Disconnect ⁽²⁾	Magnetic Contactor ⁽³⁾	
2097-V31PR0	120V	KTK-R-20 (20A)	1492-SP1D200	140M-F8E-C20	
	240V	KTK-R-10 (10A)	1492-SP1D100	140M-F8E-C10	
2097-V31PR2	120V	KTK-R-30 (30A)	1492-SP1D300	140M-F8E-C32	
	240V	KTK-R-20 (20A)	1492-SP1D200	140M-F8E-C20	
2097-V32PR0	2401/	VTK D 20 (204)	1402 5030200	140M EVE COD	
2097-V32PR2	2401	KTR-R-20 (20A)	1492-31 30200	140101-605-620	
2097-V32PR4	240V	KTK-R-30 (30A)	1492-SP3D320	140M-F8E-C32	
2007 V22DD1	120V	KTK-R-20 (20A)	1492-SP1D200	140M-F8E-C20	
2097-1551 MT	240V	KTK-R-15 (15A)	1492-SP3D150	140M-F8E-C16	
2007 V22DD2	120V	KTK-R-20 (20A)	1492-SP1D200	140M-F8E-C20	
2097-033PK3	240V	KTK-R-15 (15A)	1492-SP3D150	140M-F8E-C16	
2097-V33PR5	120V	KTK-R-30 (30A)	1492-SP1D300	140M-F8E-C32	
	240V	KTK-R-20 (20A)	1492-SP3D200	140M-F8E-C20	
2097-V33PR6	120V	N/A	N/A	N/A	
	240V	KTK-R-30 (30A)	1492-SP3D300	140M-F8E-C32	
2097-V34PR3		KTK-R-10 (10A)	1492-SP3D100	140M-F8E-C10	
2097-V34PR5	480V	KTK-R-10 (10A)	1492-SP3D100	140M-F8E-C10	
2097-V34PR6		KTK-R-20 (20A)	1492-SP3D200	140M-F8E-C20	

 When using Bulletin 1492 circuit protection devices, the maximum short circuit current available from the source is limited to 5000 A.

(2) Use fully-rated short-circuit protection circuit breaker for device branch circuit protection only when there is an upstream fully-rated breaker.

(3) Fully-rated breaker for overload current and short circuit rating.

Enclosure Selection

This example is provided to assist you in sizing an enclosure for your Bulletin 2097 drive system. You need heat dissipation data from all components planned for your enclosure to calculate the enclosure size. See <u>Power Dissipation</u> <u>Specifications on page 24</u> for the Kinetix 300 drive power dissipation.

With no active method of heat dissipation (such as fans or air conditioning) either of the following approximate equations can be used.

Metric	Standard English
$A = \frac{0.38Q}{1.87 - 1.1}$	$A = \frac{4.08Q}{T-1.1}$
Where T is temperature difference between inside air and outside ambient (°C), Q is heat generated in enclosure (Watts), and A is enclosure surface area (m ²). The exterior surface of all six sides of an enclosure is calculated as	Where T is temperature difference between inside air and outside ambient (°F), Q is heat generated in enclosure (Watts), and A is enclosure surface area (ft ²⁾ . The exterior surface of all six sides of an enclosure is calculated as
A = 2dw + 2dh + 2wh	A = (2dw + 2dh + 2wh) / 144
Where d (depth), w (width), and h (height) are in meters.	Where d (depth), w (width), and h (height) are in inches.

If the maximum ambient rating of the Kinetix 300 drive system is 40 °C (104 °F) and if the maximum environmental temperature is 20 °C (68 °F), then T=20. In this example, the total heat dissipation is 416 W (sum of all components in enclosure). So, in the equation below, T=20 and Q=416.

$$A = \frac{0.38 \,(416)}{1.8 \,(20) - 1.1} = 4.53 \,\mathrm{m}^{-2}$$

In this example, the enclosure must have an exterior surface of at least 4.53 m^2 . If any portion of the enclosure is not able to transfer heat, it should not be included in the calculation.

Because the minimum cabinet depth to house the Kinetix 300 system (selected for this example) is 332 mm (13 in.), the cabinet needs to be approximately 2000 x 700 x 332 mm (78.7 x 27.6 x 13.0 in.) HxWxD.

$$2 \times (0.332 \times 0.70) + 2 \times (0.332 \times 2.0) + 2 \times (0.70 \times 2.0) = 4.59 \text{ m}^2$$

Because this cabinet size is considerably larger than what is necessary to house the system components, it may be more efficient to provide a means of cooling in a smaller cabinet. Contact your cabinet manufacturer for options available to cool your cabinet.

Power Dissipation Specifications

Use this table to size an enclosure and calculate required ventilation for your Kinetix 300 drive system.

Cat. No.	Power Dissipation, W
2097-V31PR0	28
2097-V31PR2	39
2097-V32PR0	28
2097-V32PR2	39
2097-V32PR4	67
2097-V33PR1	28
2097-V33PR3	39
2097-V33PR5	67
2097-V33PR6	117
2097-V34PR3	39
2097-V34PR5	58
2097-V34PR6	99

Minimum Clearance Requirements

This section provides information to assist you in sizing your cabinet and positioning your Kinetix 300 system components.

IMPORTANT Mount the module in an upright position as shown. Do not mount the drive module on its side.

Figure 2 illustrates minimum clearance requirements for proper airflow and installation:

- Additional clearance is required depending on the accessory items installed.
- An additional 9.7 mm (0.38 in.) clearance is required left of the drive if the I/O expansion terminal block is used.
- An additional 26 mm (1.0 in.) clearance is required right of the drive when the heatsink is present.
- An additional 36 mm (1.42 in.) is required right of the drive when the side-mount line filter is present. An additional 50 mm (2.0 in.) is required behind the drive when the rear-mount line filter is present.
- An additional 5.0 mm (0.19 in.) clearance is required in front of the drive when the 2090-K2CK-D15M feedback connector kit is used.
- Additional clearance is required for the cables and wires connected to the top, front, and bottom of the drive.
- An additional 150 mm (6.0 in.) is required when the drive is mounted adjacent to noise sensitive equipment or clean wireways.

See Kinetix Servo Drives Specifications Technical Data, publication <u>GMC -TD003</u> for Kinetix 300 drive dimensions.

230 (9.04)

2097-V34PR6

Electrical Noise Reduction

This section outlines best practices that minimize the possibility of noise-related failures as they apply specifically to Kinetix 300 system installations. For more information on the concept of high-frequency (HF) bonding, the ground plane principle, and electrical noise reduction, see the System Design for Control of Electrical Noise Reference Manual, publication <u>GMC-RM001</u>.

Bonding Drives

Bonding is the practice of connecting metal chassis, assemblies, frames, shields, and enclosures to reduce the effects of electromagnetic interference (EMI).

Unless specified, most paints are not conductive and act as insulators. To achieve a good bond between drive and the subpanel, surfaces must be paint-free or plated. Bonding metal surfaces creates a low-impedance return path for highfrequency energy.

IMPORTANT	To improve the bond between the drive and subpanel, construct your subpanel
	out of zinc plated (paint-free) steel.

Improper bonding of metal surfaces blocks the direct return path and allows high-frequency energy to travel elsewhere in the cabinet. Excessive highfrequency energy can effect the operation of other microprocessor controlled equipment. These illustrations show recommended bonding practices for painted panels, enclosures, and mounting brackets.

Figure 3 - Recommended Bonding Practices for Painted Panels

Bonding Multiple Subpanels

Bonding multiple subpanels creates a common low impedance exit path for the high frequency energy inside the cabinet. Subpanels that are not bonded together may not share a common low impedance path. This difference in impedance may affect networks and other devices that span multiple panels.

- Bond the top and bottom of each subpanel to the cabinet by using 25.4 mm (1.0 in.) by 6.35 mm (0.25 in.) wire braid. As a rule, the wider and shorter the braid is, the better the bond.
- Scrape the paint from around each fastener to maximize metal-to-metal contact.

Establishing Noise Zones

Observe these guidelines when individual input power components are used in the Kinetix 300 system:

- The clean zone (C) exits left of the Kinetix 300 system and includes the I/ O wiring, feedback cable, Ethernet cable, and DC filter (grey wireway).
- The dirty zone (D) exits right of the Kinetix 300 system (black wireway) and includes the circuit breakers, transformer, 24V DC power supply, contactors, AC line filter, motor power, and safety cables.
- The very dirty zone (VD) is limited to where the AC line (EMC) filter VAC output jumpers over to the drive. Shielded cable is required only if the very dirty cables enter a wireway.

Figure 5 - Noise Zones (Bulletin 2090 AC line filters)

(2) For tight spaces use a grounded steel shield. For examples, see the System Design for Control of Electrical Noise Reference Manual, publication <u>GMC-RM001</u>.

- (3) This is a clean 24V DC available for any device that may require it. The 24V enters the clean wireway and exits to the left.
- (4) This is a dirty 24V DC available for motor brakes and contactors. The 24V enters the dirty wireway and exits to the right.

Figure 6 - Noise Zones (Bulletin 2097 AC line filters)

- (1) If drive system I/O cable contains (dirty) relay wires, route cable in dirty wireway.
- (2) For tight spaces use a grounded steel shield. For examples, see the System Design for Control of Electrical Noise Reference Manual, publication <u>GMC-RM001</u>.
- (3) This is a clean 24V DC available for any device that may require it. The 24V enters the clean wireway and exits to the left.
- (4) This is a dirty 24V DC available for motor brakes and contactors. The 24V enters the dirty wireway and exits to the right.

Cable Categories for Kinetix 300 Drive Components

These table indicate the zoning requirements of cables connecting to the Kinetix 300 drive components.

Wire/Cable	Connector	Zone		Method		
		Very Dirty	Dirty	Clean	Ferrite Sleeve	Shielded Cable
L1, L2, L3 (unshielded cable)	IPD	Х				
U, V, W (motor power)	MP		Х			Х
+, -, SH (shunt resistor)	BC		Х			
24V DC	BP			Х		
Control COM, 24V DC control, safety enable, and feedback signals for safe-off feature	ST0		Х			
Motor feedback	MF			Х		Х
Registration and analog outputs	IOD			Х		Х
Others			Х			
Ethernet	Port 1			Х		Х

Table 6 - Kinetix 300 Drive Components

Noise Reduction Guidelines for Drive Accessories

See this section when mounting an AC line filter or shunt resistor module for guidelines designed to reduce system failures caused by excessive electrical noise.

AC Line Filters

Observe these guidelines when mounting your AC line filter:

- If you are using a Bulletin 2090 line filter, mount the filter on the same panel as the Kinetix 300 drive, and as close to the drive as possible.
- Good HF bonding to the panel is critical. For painted panels, see the examples on page 27.
- Segregate input and output wiring as far as possible.

Shunt Resistors

Observe these guidelines when mounting your shunt resistor outside the enclosure:

- Mount shunt resistor and wiring in the very dirty zone or in an external shielded enclosure.
- Mount resistors in a shielded and ventilated enclosure outside the cabinet. •
- Keep unshielded wiring as short as possible. Keep shunt wiring as flat to • the cabinet as possible.

Figure 7 - Shunt Resistor Outside the Enclosure

(1) If drive system I/O cable contains (dirty) relay wires, route cable in dirty wire way.

(2) When space does not permit 150 mm (6.0 in.) clearance, install a grounded steel shield between the drive and clean wireway. For examples, see the System Design for Control of Electrical Noise Reference Manual, publication GMC-RM001.

When mounting your shunt module inside the enclosure, follow these additional guidelines:

- Mount the shunt resistor anywhere in the dirty zone, but as close to the Kinetix 300 drive as possible.
- Shunt wires can be run with motor power cables.
- Keep unshielded wiring as short as possible. Keep shunt wiring as flat to the cabinet as possible.
- Separate shunt wires from other sensitive, low-voltage signal cables.

Figure 8 - Shunt Resistor Inside the Enclosure

- (1) If drive system I/O cable contains (dirty) relay wires, route cable in dirty wire way.
- (2) When space does not permit 150 mm (6.0 in.) clearance, install a grounded steel shield between the drive and clean wireway. For examples, see the System Design for Control of Electrical Noise Reference Manual, publication <u>GMC-RM001</u>.

Motor Brake

The brake is mounted inside the motor and how you connect to the drive depends on the motor series.

See <u>Kinetix 300 Drive/Rotary Motor Wiring Examples</u> beginning on <u>page 176</u> for the interconnect diagram of your drive/motor combination.

Mount Your Kinetix 300 Drive

This procedure assumes you have prepared your panel and understand how to bond your system. For installation instructions regarding other equipment and accessories, see the instructions that came with those products.

ATTENTION: This drive contains electrostatic discharge (ESD) sensitive parts and assemblies. You are required to follow static control precautions when you install, test, service, or repair this assembly. If you do not follow ESD control procedures, components can be damaged. If you are not familiar with static control procedures, see Allen-Bradley publication <u>8000-4.5.2</u>, Guarding Against Electrostatic Damage or any other applicable ESD Protection Handbook.

Follow these steps to mount your Kinetix 300 drive.

1. Lay out the position for the Kinetix 300 drive and accessories in the enclosure.

See <u>Establishing Noise Zones</u> on <u>page 29</u> for panel layout recommendations. Mounting hole dimensions for the Kinetix 300 drive are shown in Kinetix Servo Drives Specifications Technical Data, publication <u>GMC-TD003</u>.

2. Attach the Kinetix 300 drive to the cabinet, first by using the upper mounting slots of the drive and then the lower.

The recommended mounting hardware is M4 (#6-32) steel machine screws torqued to 1.1 N•m (9.8 lb•in). Observe bonding techniques as described in <u>Bonding Drives</u> on page 26.

IMPORTANT To improve the bond between the Kinetix 300 drive and subpanel, construct your subpanel out of zinc plated (paint-free) steel.

3. Tighten all mounting fasteners.

Kinetix 300 Drive Connector Data and Feature Descriptions

Торіс	Page
Kinetix 300 Drive Connectors and Indicators	36
Control Signal Specifications	
Motor Feedback Specifications	

Kinetix 300 Drive Connectors and Indicators

Although the physical size of the Kinetix 300 drives vary, the location of the connectors and indicators is identical.

Figure 9 - Kinetix 300 Drive Connector and Indicators

Table 7 - Kinetix 300 Drive Connectors

Designator	Description	Connector
IPD	AC input power	3-position or 4-position plug/header
PORT1	Ethernet communication port	RJ45 Ethernet
IOD	1/0	SCSI 50 pin high density connector
MF	Motor feedback	15-pin high-density D-shell (male)
CPD	Back-up power	2-pin quick-connect terminal block
ВС	Shunt Resistor and DC Bus	7-pin quick-connect terminal block
МР	Motor power	6-pin quick-connect terminal block
STO	Safe torque off (STO) terminal	6-pin quick-connect terminal block
Safe Torque-off Connector Pinout

The Kinetix 300 drive ships with the (6-pin) wiring-plug header that connects your safety circuit to the Kinetix 300 drive safe torque-off (STO) connector. If your system does not use the safe torque-off feature, follow instructions in <u>Safe</u> <u>Torque-off Feature Bypass</u> starting on <u>page 166</u> to wire the drive with motion-allowed jumpers.

Figure 10 - Safe Torque-off Connector

STO Pin	Description	Signal
1	+24V DC output from the drive	+24V DC control
2	+24V DC output common	Control COM
3	Safety status	Safety Status
4	Safety input 1 (+24V DC to enable)	Safety Input 1
5	Safety common	Safety COM
6	Safety input 2 (+24V DC to enable)	Safety Input 2

IMPORTANT Pins STO-1 (+24V DC Control) and STO-2 (Control COM) are used only by the motion-allowed jumpers to defeat the safe torque-off function. When the safe torque-off function is in operation, the 24V supply must come from an external source.

IOD Pin	Description	Signal
1	Master encoder A+/Step+ input	MA+
2	Master encoder A-/Step- input	MA-
3	Master encoder B+/Direction+ input	MB+
4	Master encoder B-/Direction- input	MB-
5	Reserved	—
6	Reserved	—
7	Buffered encoder output: channel A+	BA+
8	Buffered encoder output: channel A-	BA-
9	Buffered encoder output: channel B+	BB+
10	Buffered encoder output: channel B-	BB-
11	Buffered encoder output: channel Z+	BZ+
12	Buffered encoder output: channel Z-	BZ-
1321	Reserved	—
22	Analog common	ACOM
23	Analog output (max 10 mA)	A0
24	Positive (+) of analog signal input	AIN1+
25	Negative (-) of analog signal input	AIN1-
26	Digital input group ACOM terminal	IN_A_COM
27	Negative travel limit switch	IN_A1
28	Positive travel limit switch	IN_A2
29	Inhibit/enable input	IN_A3

I/O Connector Pinout

IOD Pin	Description	Signal
30	Digital input A4	IN_A4
31	Digital input group BCOM terminal	IN_B_COM
32	Digital input B1	IN_B1
33	Digital input B2	IN_B2
34	Digital input B3	IN_B3
35	Digital input B4	IN_B4
36	Digital input Group CCOM Terminal	IN_C_COM
37	Digital input C1	IN_C1
38	Digital input C2	IN_C2
39	Registration input sensor	IN_C3
40	Digital input C4	IN_C4
41	Ready output collector	RDY+
42	Ready output emitter	RDY-
43	Programmable output #1 collector	OUT1-C
44	Programmable output #1 emitter	OUT1-E
45	Programmable output #2 collector	OUT2-C
46	Programmable output #2 emitter	OUT2-E
47	Programmable output #3 collector	OUT3-C
48	Programmable output #3 emitter	OUT3-E
49	Programmable output #4 collector	OUT4-C
50	Programmable output #4 emitter	OUT4-E

Figure 11 - Pin Orientation for 50-pin SCSI I/O (IOD) Connector

MF Pin	Description	Signal
1	Sine differential input+ AM+ differential input+	SIN+ AM+
2	Sine differential input- AM- differential input-	SIN- AM-
3	Cosine differential input+ BM+ differential input+	COS+ BM+
4	Cosine differential input- BM- differential input-	COS- BM-
5	Data differential input + Index pulse+	DATA+ IM+
6	Common	ECOM
7	Encoder power (+9V)	EPWR_9V ⁽²⁾
8	Single-ended 5V Hall effect commutation	S3

Motor Feedback (MF) Connector Pinout

MF Pin	Description	Signal
9	Reserved	—
10	Data differential input - Index pulse-	DATA- IM-
11	Motor thermal switch (normally closed) ⁽¹⁾	TS
12	Single-ended 5V Hall effect commutation	S1
13	Single-ended 5V Hall effect commutation	S2
14	Encoder power (+5V)	EPWR_5V ⁽²⁾
15	Reserved	_

(1) Not applicable unless motor has integrated thermal protection.

(2) Encoder power supply uses either 5V or 9V DC based on encoder/motor used.

IMPORTANT Drive-to-motor power and feedback cable length must not exceed 20 m (65.6 ft). System performance was tested at these specifications and also apply when meeting CE requirements.

Figure 12 - Pin Orientation for 15-pin Motor Feedback (MF) Connector

Ethernet Communication Connector Pinout

Port 1 Pin	Description	Signal	_	Port 1 Pin	Description	Signal
1	Transmit Port (+) Data Terminal	+ TX	_	5	—	—
2	Transmit Port (-) Data Terminal	- TX	-	6	Receive Port (-) Data Terminal	- RX
3	Receive Port (+) Data Terminal	+ RX	_	7	—	—
4	—	—	-	8	—	—

Figure 13 - Pin Orientation for 8-pin Ethernet Communication (port 1) Port

IPD Designator	Description (2097-V31PRx drives)	Signal
L2/N	AC Power In (non-doubler operation)	L2/N
L1	AC Power In	L1
Ν	AC Power Neutral (120V doubler only)	Ν
PE	Protective Earth (ground)	PE

AC Input Power Connector Pinout

IPD Designator	Description (2097-V32PRx drives)	Signal
L2	AC Power In	L2
L1	AC Power In	L1
PE	Protective Earth (ground)	PE

IPD Designator	Description (2097-V33PRx, and 2097-V34PRx drives)	Signal
L3	AC Power In (three-phase models)	L3
L2	AC Power In	L2
L1	AC Power In	L1
PE	Protective Earth (ground)	PE

Back-up Power Connector Pinout

BP Designator	Description	Signal
+24V	Positive 24V DC	+24V DC
-24V	24V DC power supply return	Return

Shunt Resistor and DC Bus Connector Pinout

BC Designator	Description	Signal
+	Positive DC bus/Shunt resistor	+
+		+
SH	Shunt Resistor	SH
-	Negative DC bus	-
-		-

Motor Power Connector Pinout

MP Designator	Description	Signal
PE	Protective Earth (ground)	PE
W	Motor power out	W
V	Motor power out	۷
U	Motor power out	U

Control Signal Specifications

This section provides a description of the Kinetix 300 drive I/O (IOD), communication, shunt resistor and DC bus (BC), and back-up power (BP) connectors.

Digital Inputs

The Kinetix 300 drive has twelve digital inputs. They can be used for travel limit switches, proximity sensors, push buttons, and hand shaking with other devices. Each input can be assigned an individual de-bounce time via MotionView software or Explicit Messaging.

The inputs are separated into three groups: A, B, and C. Each group has four inputs and share one common: ACOM, BCOM, and CCOM respectively.

Travel limit switches, the inhibit/enable input, and registration input have dedicated inputs as shown in <u>Table 9</u>. For more information on the overtravel inputs, see Appendix E on <u>page 217</u>.

Digital Input	Function
IN_A1	Negative travel limit switch
IN_A2	Positive travel limit switch
IN_A3	Inhibit/enable input
IN_A4	N/A
IN_B1	N/A
IN_B2	N/A
IN_B3	N/A
IN_B4	N/A
IN_C1	N/A
IN_C2	N/A
IN_C3	Registration input sensor
IN_C4	N/A

Table 9 - Digital Input Assignments

You can configure the inputs listed as N/A for any of these functions.

- Abort Homing
- Abort Index
- Start Homing
- Start Index
- Fault Reset
- Home Sensor
- Index Select

Some of the digital inputs exercise control over functions under the control of the Output Assembly. When a digital input is mapped to the same function as exists in the Output Assembly, the following timing diagrams apply.

Figure 14 - Enable Timing Diagram (enable switch function configured for Run)

IMPORTANT Do not use EtherNet/IP for control and for configuring the Enable switch function for Run.

Figure 17 - Indexing Timing Diagram

The digital inputs are optically isolated and sinks up to 24V DC. Electrical details are shown in <u>Table 10</u> on <u>page 44</u>. You can set up the inputs for PNP sourcing or NPN sinking.

Figure 18 - Sourcing of Digital Inputs

Figure 19 - Sinking of Digital Inputs

Table 10 - Digital Input Signal Specifications

Parameter	Value
Scan time	500 µs
Current, max	9 mA, typical
Input impedance	1.2 k Ω , typical
Voltage range	524V DC

Digital Outputs

There are five digital outputs, OUT1...OUT4 and RDY, available on the IOD connector. Outputs are optically isolated open collector/emitter and are fully isolated from the drive circuits. Each output, OUT1...OUT4, can be assigned to one of these functions:

- Not assigned
- Zero speed
- In-speed window
- Current limit
- Run-time fault
- Ready
- Brake (motor brake release)

The Ready Output has a fixed function that becomes active when the drive is enabled and the output power transistors become energized.

Table 11 - Digital Output Signal Specifications

Parameter	Value
Scan time	500 µs
Current, max	100 mA
Voltage, max	30V DC

Figure 20 - Digital Output Circuit

Analog Reference Input

The analog reference input AIN1+ and AIN1- (IOD-24 and IOD-25) accepts up to a $\pm 10V$ DC analog signal as shown in <u>Table 12</u>. The analog signal is converted to a digital value with 12 bit resolution (11-bit plus sign). The total reference voltage as seen by the drive is the voltage difference between AIN1+ and AIN1-. If used in Single-ended mode, one of the inputs must be connected to a voltage source while the other one must be connected to Analog Common (ACOM). If used in Differential mode, the voltage source is connected across AIN1+ and AIN1- and the driving circuit common, if available, is connected to the drive Analog Common (ACOM) terminal.

Parameter	Value
Scan time	0.0625 ms
Current, max	Depend on load
Input impedance	47 k Ω , typical
Voltage range	-1010V DC

Analog Output

The analog output (AO) on pin IOD-23 has a 10-bit resolution. The analog output is a single-ended signal with reference to Analog Common (ACOM) that can represent this motor data:

- Not Assigned
- RMS Phase Current
- RMS Peak Current
- Motor Velocity
- Phase Current U
- Phase Current V
- Phase Current W
- Iq Current
- Id Current

Figure 21 - Analog Output Circuit

Parameter	Value
Scan time	0.0625 ms
Current, max	10 mA
Voltage range	-1010V DC

For configuration/setup of the analog outputs, see <u>Configure the Drive</u> <u>Parameters and System Variables</u> beginning on <u>page 145</u>.

Master Gearing/Step and Direction Inputs

You can connect a master encoder with quadrature outputs to the Kinetix 300 drive and control position in the Master Gearing operating mode.

You can connect a step and direction signal pair to the Kinetix 300 drive and control position in the Step and Direction operating mode.

These inputs are optically isolated from the rest of the drive circuits and from each other. Both inputs can operate from any voltage source in the range of 5...24V DC and do not require additional series resistors for normal operation.

IMPORTANT Master gearing inputs must be incremental encoders with TTL outputs.

Figure 22 - Step and Direction Timing Diagram

CCW

Table 14 - Input Type and Output Compatibility

Attribute	Value
Recommended voltage	524V DC
Input frequency, max	2 MHz
Pulse width (negative or positive)	500 ns
Input impedance	700 Ω

Figure 24 - Master Gearing/Step and Direction Input Circuit Diagram

CW

Differential signal inputs are preferred when using master gearing/step and direction. When using differential signal inputs, sinking or sourcing outputs can

be used. Single-ended inputs can be used but are not recommended. Sinking type outputs cannot be used if single-ended inputs are used. The function of these master gearing/step and direction inputs is software selectable. Use the MotionView software, General category, to choose the desirable function.

An external pulse train signal (step) supplied by an external device, such as a PLC or stepper indexer, can control the speed and position of the servo motor. The speed of the motor is controlled by the frequency of the step signal, and the number of pulses that are supplied to the Kinetix 300 drive determines the position of the servo motor. Direction input controls direction of the motion.

Buffered Encoder Outputs

There are many applications where it is desired to close the feedback loop to an external device. This feature is accessible through the buffered encoder output connections (IOD-7...IOD-12) for TTL differential line encoder types. A master drive powering a motor with a SICK-Stegmann or Tamagawa high-resolution encoder does not generate buffered encoder outputs for master gearing to a slave drive.

IMPORTANT	The buffered encoder outputs are not compatible with SICK-Stegmann or
	Tamagawa high-resolution motor feedback.

If a motor with encoder feedback is being used, the A+, A-, B+, B-, Z+, and Zsignals are passed directly through drive pins IOD-7...IOD-12 with no filtering, up to a speed of 2 MHz. The encoder pass through delay is approximately 100 ns.

Ethernet Connections

An RJ45 Ethernet connector (port 1) is provided on the Kinetix 300 drive.

Table 15 - Ethernet Communication Specifications

Attribute	Value
Communications	100BASE-TX, full duplex
Cyclic update period	2 ms, min
Auto MDI/MDIX crossover detection/correction	Yes
Cabling	CAT5E or CAT6, unshielded or shielded, 100 m (328 ft)

24V DC Back-up Power

The Kinetix 300 drive can use an external power supply to power the logic and communication circuits. If an independent 24V (@ 1 A) power supply is connected to the BP connector, the logic and communication circuits remain active during a mains input power loss.

Table 16 - 24V DC Back-up Power Specifications

Attribute	Value
Input voltage	2026V DC
Current	500 mA
Inrush, max	30 A

Motor Feedback Specifications

The Kinetix 300 drive accepts motor feedback signals from the following types of encoders with these general specifications.

Attribute	Motor Feedback
Feedback device support	 SICK-Stegmann Hiperface Generic TTL Incremental Tamagawa 17-bit Serial
Power supply voltage (EPWR5V)	5.135.67V
Power supply current (EPWR5V)	400 mA, max ^{(1) (2)}
Power supply voltage (EPWR9V)	8.39.9V
Power supply current (EPWR9V)	275 mA, max ⁽²⁾⁽³⁾
Thermostat	Single-ended, under 500 $\Omega=$ no fault, over 10 k $\Omega=$ fault

(1) 400 mA on the 5V supply with no load on the 9V supply.

(2) 300 mA on the 5V supply with 150 mA on the 9V supply.

(3) 275 mA on the 9V supply with no load on the 5V supply.

TIP

Auto-configuration is possible by using the Kinetix 300 drive MotionView OnBoard software for Allen-Bradley motors.

Motor Feedback Specifications

The Kinetix 300 drives support multiple types of feedback devices by using the 15-pin (MF) motor feedback connector and sharing connector pins in many cases.

Table 18 - Motor Feedback Si	gnals b	y Device	Type
------------------------------	---------	----------	------

MF Pin	SICK-Stegmann Hiperface	Generic TTL Incremental	Tamagawa 17-bit Serial
1	SIN+	AM+	—
2	SIN-	AM-	—
3	COS+	BM+	—
4	COS-	BM-	—
5	DATA+	IM+	DATA+
6	ECOM	ECOM	ECOM
7	EPWR9V	—	—
8	—	S3	—
9	—	—	—
10	DATA-	IM-	DATA-
11	TS	TS	—
12	—	S1	—
13		S2	
14	—	EPWR5V	EPWR5V
15	—	—	—

This is the motor thermostat interface schematic. Although the thermostat signal is shown for all feedback types, some motors may not support this feature because it is not part of the feedback device.

Figure 25 - Motor Thermostat Interface

Table 19 - Motor Thermostat State Specifications

State	Resistance at TS
No Fault	500 Ω
Fault	10 kΩ

Attribute	Value
Protocol	Hiperface
Memory support	Not programmed, or programmed with Allen-Bradley motor data
Hiperface data communication	RS485, 9600 baud, 8 data bits, no parity
Sine/Cosine interpolation	2048 counts/sine period
Input frequency (AM/BM)	250 kHz, max
Input voltage (AM/BM)	0.61.2V, p-p, measured at the drive inputs
Line loss detection (AM/BM)	Average $(\sin^2 + \cos^2) > $ constant

Table 20 - SICK-Stegmann Hiperface Specifications

Attribute	Value
TTL incremental encoder support	5V, differential A quad B
Quadrature interpolation	4 counts/square wave period
Differential input voltage (AM, BM, and IM)	1.07.0V
DC current draw (AM, BM, and IM)	30 mA, max
Input signal frequency (AM, BM, and IM)	5.0 MHz, max
Edge separation (AM and BM)	42 ns min, between any two edges
Line loss detection (AM and BM)	Average $(AM^2 + BM^2) > constant$
Hall inputs (S1, S2, and S3)	Single-ended, TTL, open collector, or none

Table 21 - Generic TTL Incremental Specifications

Figure 29 - Generic TTL Interface, IM Signals

Figure 30 - Generic TTL Interface, S1, S2, or S3 Signals

Table 22 - Tamagawa 17-bit Serial Specifications

Attribute	Value
Tamagawa model support	TS5669N124
Protocol	Tamagawa proprietary
Memory support	Programmed with Allen-Bradley motor data
Differential input voltage	1.07.0V
Data communication	2.5 Mbps, 8 data bits, no parity
Battery	3.6V, located external to drive in low-profile connector kit

See <u>Figure 27</u> for the Tamagawa 17-bit serial interface schematic. It is identical to the SICK-Stegmann Hiperface (DATA) signals schematic.

Feedback Power Supply

The Kinetix 300 drive generates +5V and +9V DC for motor feedback power. Short circuit protection and separate common mode filtering for each channel is included.

Table 23 - Motor Feedback Power Specifications

Supply	Reference	Voltage			Curre	nt mA
		Min	Nominal	Max	Min	Max
+5V DC	EPWR_5V	5.13	5.4	5.67	0	400
+9V DC	EPWR_9V	8.3	9.1	9.9	0	275

Figure 31 - Pin Orientation for 15-pin Motor Feedback (MF) Connector

Торіс	Page
Basic Wiring Requirements	57
Grounding Your Kinetix 300 Drive System	64
Power Wiring Requirements	65
Wiring Guidelines	68
Wiring the Kinetix 300 Drive Connectors	69
Apply the Motor Cable Shield Clamp	76
Feedback and I/O Cable Connections	77
Wiring the Feedback and I/O Connectors	79
Kinetix 300 Drive (IOD connector and terminal block)	79
Shunt Resistor Connections	81
Ethernet Cable Connections	82

Connecting the Kinetix 300 Drive System

Basic Wiring Requirements

This section contains basic wiring information for the Kinetix 300 drive.

ATTENTION: Plan the installation of your system so that you can perform all cutting, drilling, tapping, and welding with the system removed from the enclosure. Because the system is of the open type construction, be careful to keep any metal debris from falling into it. Metal debris or other foreign matter can become lodged in the circuitry, which can result in damage to components.

SHOCK HAZARD: To avoid hazard of electrical shock, perform all mounting and wiring of the Bulletin 2097 drive before applying power. Once power is applied, connector terminals may have voltage present even when not in use.

IMPORTANT This section contains common PWM servo system wiring configurations, size, and practices that can be used in a majority of applications. National Electrical Code, local electrical codes, special operating temperatures, duty cycles, or system configurations take precedence over the values and methods provided.

Build Your Own Cables

	IMPORTANT	Factory-made cables are designed to minimize EMI and are recommended over hand-built cables to optimize system performance.
	 Connect with a construction Use twist each oth return. See the Kinetix low-profile construction 	the cable shield to the connector shells on both ends of the cable omplete 360° connection. ted pair cable whenever possible. Twist differential signals with er and twist single-ended signals with the appropriate ground Motion Control Selection Guide, publication <u>GMC-SG001</u> , for nector kit, drive-end (mating) connector kit, and motor-end atalog numbers.
	Route Power Be aware that w radiated noise f induced into m or other sensiti communication	and Signal Wiring when you route power and signal wiring on a machine or system, from nearby relays, transformers, and other electronic drives can be lotor or encoder feedback signals, input/output communication, we low voltage signals. This can cause system faults and n anomalies.
	See <u>Electrical N</u> voltage cables i Reference Man	<u>Noise Reduction</u> on <u>page 26</u> for examples of routing high and low n wireways. See the System Design for Control of Electrical Noise ual, publication <u>GMC-RM001</u> , for more information.
Determine the Input Power Configuration	This section co input power wi	ntains examples of typical single-phase and three-phase facility red to single-phase and three-phase Kinetix 300 drives.
	The grounded phase power at be certain to in	power configuration lets you ground your single-phase or three- a neutral point. Match your secondary to one of the examples and clude the grounded neutral connection.

Three-phase Power Wired to Three-phase Drives

These examples illustrate grounded three-phase power wired to three-phase Kinetix 300 drives when phase-to-phase voltage is within drive specifications.

(1) Leakage current from the line filter, in this configuration, typically is higher than a balanced (center ground) configuration.

Single-phase Power Wired to Single-phase Drives

These examples illustrate grounded single-phase power wired to single-phase Kinetix 300 drives when phase-to-phase voltage is within drive specifications.

IMPORTANT The 2097-V32PRx models have integrated AC line filters and do not require the AC line filter shown in this diagram.

Figure 35 - Single-phase Grounded Power Configurations

(1) This configuration applies to voltage-doubler operation for 2097-V31PRx drives.

Reducing transformer output reduces motor speed. Feeder and branch short circuit protection is not illustrated.

Voltage Doubler Operation

You can wire the 2097-V31PR*x* drives with 120V input power and achieve twice the output voltage at half the output current, while maintaining the same output power. To use the voltage-doubler circuit, connect the 120V single-phase input power to the IPD-L1 and IPD-N terminals.

For Kinetix 300 drive power specifications, see Kinetix Servo Drives Specifications Technical Data, publication <u>GMC-TD003</u>. For Kinetix 300 drive input wiring diagrams, see <u>Power Wiring Examples on page 173</u>.

Isolation Transformer in Grounded Power Configurations

When using an isolation transformer, attach a chassis ground wire to the neutral connection. This grounded neutral connection does the following:

- Prevents the system from floating and thereby avoids any high voltages that might otherwise occur, for example due to static electricity
- Provides a solid earth path for fault conditions

ATTENTION: If the supply transformer is an auto transformer (not recommended), a chassis earth ground should not be added. A chassis earth ground should already be included elsewhere in the system and adding another would create a short.

Three-phase Power Wired to Single-phase Drives

This example illustrates grounded three-phase power wired to single-phase Kinetix 300 drives when phase-to-phase voltage is within drive specifications.

Figure 36 - Single-phase Amplifiers on Three-phase Power (WYE)

 Contactors (MI, M2, and M3) may be optional. For more information, see Understanding the Machinery Directive, publication <u>SHB-</u> 900. AC line filter is optional, but is required for CE compliance.

Feeder short circuit protection is not illustrated.

This example illustrates grounded three-phase power wired to single-phase Kinetix 300 drives when phase-to-phase voltage exceeds drive specifications.

A neutral must be connected when single-phase drives are attached to a threephase isolating transformer secondary. It is not necessary that all three-phases be loaded with drives, but each drive must have its power return via the neutral connection.

ATTENTION: Failure to connect the neutral can result in supply voltage swings at the individual drives. This occurs when the neutral point moves vectorially as a result of load variations normally experienced by the individual drives. The supply voltage swing may cause undervoltage and overvoltage trips on the drives, and the drive can be damaged if the overvoltage limit is exceeded.

Figure 37 - Single-phase Amplifiers (one AC line filter per drive)

Feeder and branch short circuit protection is not illustrated.

IMPORTANT Providing an EMC line filter for each drive is the preferred configuration, and required for CE compliance.

If a three-phase line filter is used to feed multiple single-phase drives (not recommended), it is important that the filter include a neutral connection as shown above. This applies if three-phase is brought directly into the filter and no isolating transformer is present.

Voiding of CE Compliance

The three-phase and neutral in-line filter applications described above may not be adequate from an EMC aspect for CE compliance. Therefore, EMC validity and CE marking by Rockwell Automation is voided when three-phase and neutral in line filters are used.

ATTENTION: The three-phase isolation transformer and neutral in-line filter applications described in this document have not been tested for EMC by Rockwell Automation and products used in such installations are not considered CE marked by Rockwell Automation.

If this three-phase isolation transformer and neutral in-line filter application is used, the responsibility for EMC validation lies with the user and CE marking of the system becomes the user's responsibility.

If CE compliance is a customer requirement, single-phase line filters that have been tested by Rockwell Automation and specified for the product should be used. See Kinetix Servo Drives Specifications Technical Data, publication <u>GMC-TD003</u> for catalog numbers.

Grounding Your Kinetix 300 Drive System

All equipment and components of a machine or process system should have a common earth ground point connected to their chassis. A grounded system provides a safety ground path for short circuit protection. Grounding your modules and panels minimize shock hazard to personnel and damage to equipment caused by short circuits, transient overvoltages, and accidental connection of energized conductors to the equipment chassis. For CE grounding requirements, see <u>CE Requirements</u> in <u>Chapter 1</u>.

IMPORTANT To improve the bond between the Kinetix 300 drive and subpanel, construct your subpanel out of zinc plated (paint-free) steel.

Ground Your Drive to the System Subpanel

ATTENTION: The National Electrical Code contains grounding requirements, conventions, and definitions. Follow all applicable local codes and regulations to safely ground your system. See the illustration below for details on grounding your Kinetix 300 drive. See <u>Appendix A</u> for the power wiring diagram for your Kinetix 300 drive.

If the Kinetix 300 drive is mounted on a painted subpanel, ground the drive to a bonded cabinet ground bus by using a braided ground strap or 4.0 mm² (12 AWG) solid copper wire 100 mm (3.9 in.) long.

Figure 38 - Connecting the Braided Ground Strap Example

For drive dimensions, See Kinetix Servo Drives Specifications Technical Data, publication <u>GMC-TD003</u>.

Figure 39 - Chassis Ground Configuration (multiple Kinetix 300 drives on one panel)

Ground Multiple Subpanels

To ground multiple subpanels, see the figure below. HF bonding is not illustrated. For information, see <u>Bonding Multiple Subpanels</u> on <u>page 28</u>.

Figure 40 - Subpanels Connected to a Single Ground Point

Power Wiring Requirements

Wire should be copper with 75 °C (167 °F) minimum rating. Phasing of main AC power is arbitrary and earth ground connection is required for safe and proper operation.

See <u>Power Wiring Examples</u> on page 173 for interconnect diagrams.

IMPORTANT The National Electrical Code and local electrical codes take precedence over the values and methods provided.

Cat No.	Description	Terminals Recommended		Recommended	Strip Length	Torque Value		
Cal. NO.	Description	Pins		Signals		mm ² (AWG)	mm (in.)	N•m (lb•in)
2097-V31PR0 2097-V32PR0 2097-V32PR2 2097-V33PR1 2097-V33PR3 2097-V34PR3 2097-V34PR5 2097-V34PR6	Mains input power (IPD connector)		L3 L2 L1 DE (1)	L2/N L1 N DE (2)	L2 L1 PE ⁽³⁾	2.5 (14)	7 (0.28)	0.5 (4.5)
2097-V32PR4 2097-V33PR5			r L	r.		4.0 (12)	7 (0.28)	0.5 (4.5)
2097-V31PR2 2097-V33PR6						6.0 (10)	7 (0.28)	0.560.79 (5.07.0)
2097-V31PR0 2097-V31PR2 2097-V32PR0 2097-V32PR2 2097-V32PR4 2097-V33PR1 2097-V33PR3 2097-V33PR5 2097-V34PR3 2097-V34PR5 2097-V34PR6	Motor power (MP connector)			PE W V U		2.5 (14)	7 (0.28)	0.5 (4.5)
2097-V33PR6	Ĩ				4.0 (12)	7 (0.28)	0.5 (4.5)	
2097-V31PR0 2097-V31PR2 2097-V32PR0 2097-V32PR2 2097-V32PR4 2097-V33PR1 2097-V33PR3 2097-V33PR5 2097-V34PR3 2097-V34PR5 2097-V34PR6	Shunt /DC Bus ⁽⁴⁾ (BC connector)		+ + SH -			2.5 (14)	7 (0.28)	0.5 (4.5)
2097-V33PR6					4.0 (12)	7 (0.28)	0.5 (4.5)	
2097-V3 <i>x</i> PR <i>x</i>	Control back-up power (BP connector)		+24V DC -24V DC					
2097-V3 <i>x</i> PR <i>x</i>	Safe torque-off (STO connector)	STO-1 ⁽⁵⁾ STO-2 ⁽⁵⁾ STO-3 STO-4 STO-5 STO-6	+24V DC C Control COI Safety Stat Safety Inpu Safety COM Safety Inpu	ontrol M us ut 1 1 ut 2		1.5 (16)	6 (0.25)	0.5 (4.5)

Table 24 - Kinetix 300 Drive Power Wiring Requirements

(1) Applies to 2097-V33PRx, and 2097-V34PRx drive modules.

(2) Applies to 2097-V31PRx drive modules.

(3) Applies to 2097-V32PRx drive modules.

(4) Use for shunt resistor connection only.

(5) Use for bypassing the STO circuit only.

ATTENTION: To avoid personal injury and/or equipment damage, make sure installation complies with specifications regarding wire types, conductor sizes, branch circuit protection, and disconnect devices. The National Electrical Code (NEC) and local codes outline provisions for safely installing electrical equipment.

To avoid personal injury and/or equipment damage, make sure motor power connectors are used for connection purposes only. Do not use them to turn the unit on and off.

To avoid personal injury and/or equipment damage, make sure shielded power cables are grounded to prevent potentially high voltages on the shield.

Table 25 - Shunt Resistor Power Wiring Requirements

Accessory	Description	Connects to Terminals	Recommended Wire Size mm ² (AWG)	Torque Value N∙m (lb•in)	
2007_Rv	Shunt Resistor	+	2.5 (14)	0.5 (4.5)	
2007 16	Shunchesistor	SH	2.2 (17)	0.5 (4.5)	

Wiring Guidelines

Use these guidelines as a reference when wiring the connectors on your Kinetix 300 drive power modules.

IMPORTANT	For connector locations of the Kinetix 300 drives, see <u>Kinetix 300 Drive</u> <u>Connectors and Indicators</u> on <u>page 36</u> .
	When tightening screws to secure the wires, see the tables beginning on page <u>65</u> for torque values.
	When removing insulation from wires, see the tables beginning on <u>page 65</u> for strip lengths.
IMPORTANT	To improve system performance, run wires and cables in the wireways as

established in <u>Establishing Noise Zones</u> on <u>page 29</u>.

Follow these steps when wiring the connectors on your Kinetix 300 drive modules.

1. Prepare the wires for attachment to each connector plug by removing insulation equal to the recommended strip length.

IMPORTANT Use caution not to nick, cut, or otherwise damage strands as you remove the insulation.

- 2. Route the cable/wires to your Kinetix 300 drive.
- 3. Insert wires into connector plugs.

See connector pinout tables in <u>Chapter 3</u> or the interconnect diagrams in <u>Appendix A</u>.

- 4. Tighten the connector screws.
- 5. Gently pull on each wire to make sure it does not come out of its terminal; reinsert and tighten any loose wires.
- 6. Insert the connector plug into the module connector.

Wiring the Kinetix 300 Drive Connectors

This section provides examples and wiring tables to assist you in making connections to the Kinetix 300 drive.

Wire the Safe Torque-off (STO) Connector

For the safe torque-off (STO) connector pinouts, feature descriptions, and wiring information, see Chapter 8 on page 159.

Wire the Back-up Power (BP) Connector

Table 26 - Back-up Power (BP) Connector

Drive Cat. No.	Terminals	Recommended Wire Size mm ² (AWG)	Strip Length mm (in.)	Torque Value N∙m (lb•in)
2097-V3 <i>x</i> PRx	+24V DC	1.5 (16)	6 (0.25)	0.5 (4.5)
	-24V DC	1.5 (10)		

Wire the Input Power (IPD) Connector

Table 27 - Input Power (IPD) Connector

Drive Cat. No.	Terminals		Recommended Wire Size mm ² (AWG)	Strip Length mm (in.)	Torque Value N•m (Ib•in)	
2097-V31PR0 2097-V32PR0 2097-V32PR2 2097-V33PR1 2097-V33PR3 2097-V34PR3 2097-V34PR5 2097-V34PR6	L3 L2 L1 PF ⁽¹⁾	L2/N L1) PE ⁽²⁾	L2 L1 PE ⁽³⁾	2.5 (14)	7 (0.28)	0.5 (4.5)
2097-V32PR4 2097-V33PR5				4.0 (12)	7 (0.28)	0.5 (4.5)
2097-V31PR2 2097-V33PR6				6.0 (10)	7 (0.28)	0.560.79 (5.07.0)

(1) Applies to 2097-V33PRx, and 2097-V34PRx drive modules.

(2) Applies to 2097-V31PRx drive modules.

(3) Applies to 2097-V32PRx drive modules.

Wire the Motor Power (MP) Connector

Connections to the motor power (MP) connector include rotary motors, and rotary motor driven actuators.

Table 28 - Motor Power (MP) Termination Specifications

Drive Cat. No.	Terminals	Recommended Wire Size mm ² (AWG)	Strip Length mm (in.)	Torque Value N∙m (lb•in)
2097-V31PR0 2097-V31PR2 2097-V32PR0 2097-V32PR2 2097-V32PR4 2097-V33PR1 2097-V33PR3 2097-V33PR5 2097-V34PR3 2097-V34PR5 2097-V34PR6	PE W V U	2.5 (14)	7 (0.28)	0.5 (4.5)
2097-V33PR6		4.0 (12)		

Cable Shield Terminations

Factory-supplied motor power cables for MP-Series and TL-Series motors and actuator are shielded. The braided cable shield must terminate near the drive during installation. Remove small portion of the cable jacket to expose the shield braid and clamp the exposed shield to the panel.

ATTENTION: To avoid hazard of electrical shock, ensure shielded power cables are grounded at a minimum of one point for safety.

IMPORTANTFor TL-Series motors, also connect the 152 mm (6.0 in.) termination wire to the
closest earth ground.
See Pigtail Terminations on page 72 for more information.

Pigtail Terminations

TL-Series motors have a short pigtail cable that connects to the motor, but is not shielded. The preferred method for grounding the TL-Series power cable on the motor side is to expose a section of the cable shield and clamp it directly to the machine frame. The motor power cable also has a 150 mm (6.0 in.) shield termination wire with a ring lug that connects to the closest earth ground. Use this method in addition to the cable clamp. The termination wire may be extended to the full length of the motor pigtail if necessary, but it is best to connect the supplied wire directly to ground without lengthening.

Figure 41 - Pigtail Terminations

 Remove paint from machine frame to be sure of proper HF-bond between machine frame and motor case, shield clamp, and ground stud.

Motor/Actuator	Connector Type	Motor/Actuator Cat. No.	Motor Power Cables (with brake wires)	Motor Power Cables (without brake wires)	
MP-Series (Bulletin MPL)		MPL-A/B15xxx-4xAA and MPL-A/B2xxx-4xAA			
MP-Series (Bulletin MPS)	Circular (Threaded) DIN	MPS-A/B <i>xxxx</i>	2090-XXNPMF- <i>xxSxx</i> (standard) or	2090-CPWM4DF- <i>xx</i> AF <i>xx</i> (continuous-flex)	
MP-Series (Bulletin MPAS)		MPAS-A/Bxxxx	(continuous-flex)		
MP-Series (Bulletin MPAR)		MPAR-A/B1xxx and MPAR-A/B2xxx (Series A)			
MP-Series (Bulletin MPL)		MPL-A/B15xxx-7xAA , MPL-A/B2xxx-7xAA, MPL-A/B3xxx-7xAA, MPL-A/B4xxx-7xAA, and MPL-A/B45xxx-7xAA		2090-CPWM7DF-xxAAxx (standard) or 2090-CPWM7DF-xxAFxx (continuous-flex)	
MP-Series (Bulletin MPM)		MPM-A/Bxxxx			
MP-Series (Bulletin MPF)		MPF-A/B <i>xxxx</i>			
MP-Series (Bulletin MPAR)	Circular (Speedtec) DIN	MPAR-A/B3 <i>xxx,</i> MPAR-A/B1xxx and MPAR-A/B2xxx (series B)	2090-CPBM7DF-xxAAxx (standard) or 2090-CPBM7DF-xxAFxx (continuous-flex)		
MP-Series (Bulletin MPAI)		MPAI-A/B3 <i>xxxx</i>			
LDC-Series		LDC-Cxxxx			
LDL-Series		LDL-xxxxxxx			
LDAT-Series		LDAT-Sxxxxxxx			
TL-Series (Bulletin TLY)	Circular Plastic	TLY-Axxxx	2000_CPRM6DE_16AAvx (standard)	2000_CPWM6DE_164 Avy (standard)	
TL-Series (Bulletin TLAR)		TLAR-Axxxx			

Table 29 - Motor Power Cable Compatibility
This diagram shows an example of three-phase power wires for motors/actuators that have no brakes. Thermal switch wires are included in the feedback cable.

See <u>Kinetix 300 Drive/Rotary Motor Wiring Examples</u> beginning on <u>page 176</u> for interconnect diagrams.

Figure 42 - Motor Power Terminations (three-phase wires only)

The cable shield clamp shown above is mounted to the subpanel. Ground and secure the motor power cable in your system following instructions on page 76.

This diagram shows an example of wiring with three-phase power wires and brake wires. The brake wires have a shield braid (shown below as gray) that folds back under the cable clamp before the conductors are attached to the motor brake circuit. Thermal switch wires are included in the feedback cable.

See <u>Kinetix 300 Drive/Rotary Motor Wiring Examples</u> beginning on <u>page 176</u> for interconnect diagrams.

Figure 43 - Motor Power Terminations (three-phase and brake wires)

ltem	Description	ltem	Description
1 ⁽¹⁾	24V power supply	5	I/O (IOD) connector ⁽²⁾
2 ⁽¹⁾	Relay and diode assembly ⁽³⁾	6	2097-V3xPRx Kinetix 300 drive
3	Minimize unshielded wires in brake circuit	7	Motor power (MP) connector
4	MP-Series cable brake wires	8	Cable clamp ⁽⁴⁾

(1) User supplied. Size as required by motor brake, See Motor Brake Currents on page 185.

(2) Configure one emitter and collector pair from the Digital Outputs, OUT-1... OUT-4, pins 43...50, as Brake+ and Brake - by using MotionView software. Wire the output as sourcing and set brake engage and disengage times for motor selected. Motor brake is active on enable. For Digital Output specifications, see page 45

(3) Diode 1N4004 rated 1.0 A @ 400V DC. See Interconnect Diagram Notes beginning on page 176.

(4) Exposed shield under clamp and place within 50...75 mm (2...3 in.) of drive, see page 76 for details.

Cable shield and lead preparation is provided with most Allen-Bradley cable assemblies. Follow these guidelines if your motor power cable shield and wires require preparation.

Figure 44 - Cable Shield and Lead Preparation

See <u>Shunt Resistor Wiring Example</u> beginning on <u>page 176</u> for interconnect diagrams.

Table 30 - Motor Power (MP) Connector

MP-Series or TL-Series Servo Motor	Terminal
U / Brown	U
V / Black	۷
W / Blue	W
\perp Green/Yellow	÷

Tab	le	31	-	Motor	Power	(MP)	Terminat	ion \mathfrak{S}	Speci	fication	S
-----	----	----	---	-------	-------	------	----------	--------------------	-------	----------	---

Drive Cat. No.	Terminals	Recommended Wire Size mm ² (AWG)	Strip Length mm (in.)	Torque Value N•m (Ib•in)
2097-V31PR0 2097-V31PR2 2097-V32PR0 2097-V32PR2 2097-V32PR4 2097-V33PR1 2097-V33PR3 2097-V33PR5 2097-V34PR3 2097-V34PR5 2097-V34PR6	PE W V U	2.5 (14)	7 (0.28)	0.5 (4.5)
2097-V33PR6]	4.0 (12)		

Apply the Motor Cable Shield Clamp

This procedure assumes you have completed wiring your motor power (MP) connector and are ready to apply the cable shield clamp.

Follow these steps to apply the motor cable shield clamp.

1. Locate a suitable position for installing cable shield clamp within 50...75 mm (2...3 in.) of the drive.

2. Lay out and drill holes for cable clamp.

ATTENTION: Plan the installation of your system so that you can perform all cutting, drilling, tapping, and welding with the system removed from the enclosure. Because the system is of the open type construction, be careful to keep any metal debris from falling into it. Metal debris or other foreign matter can become lodged in the circuitry, which can result in damage to components.

- **3.** Locate the position on the motor power cable that comes under the clamp and remove about an inch of the cable jacket to expose the shield braid.
- **4.** Position the exposed portion of the cable braid directly in line with the clamp.
- 5. Clamp the exposed shield to the panel by using the clamp and 2 #6-32 x 1 screws provided.
- 6. Repeat <u>step 1</u>...<u>step 5</u> for each Kinetix 300 drive you are installing.

Feedback and I/O Cable Connections

Factory made cables with premolded connectors are designed to minimize EMI and are recommended over hand-built cables to improve system performance. However, other options are available for building your own feedback and I/O cables.

Table 32 - Options for Connecting Motor Feedback and I/O

Connection Option	Cat. No.	Cable	Using This Type of Cable
Premolded connectors	N/A	Motor feedback	See the table below for the premolded motor feedback cable available for your motor.
Low-profile connector	2090-K2CK-D15M	Motor feedback	See the table below for the flying-lead cable available for your motor.
I/O Terminal Block	2097-TB1	I/O interface for Master Gearing mode	User-supplied flying-lead cable.

	Table 33	- Motor Feedba	k Cables for S	pecific Motor	/Feedback	Combinations
--	----------	----------------	----------------	---------------	-----------	--------------

Motor Cat. No.	Connector	Feedback Type	Feedba	Pinout	
	Туре		Premolded	Flying-lead	
MPL-A/B15 <i>xxx-</i> Hx4xAA, MPL-A/B2xxx-Hx4xAA		Incremental encoder			
MPL-A/B15 <i>xxx</i> -V/Ex4xAA, MPL-A/B2 <i>xxx</i> -V/Ex4xAA					
MPAR-A/B3xxxx MPAR-A/B1xxxx and MPAR-A/B2xxxx (series A)	(threaded) DIN			2090-XXNFMF-Sxx (standard) 2090-CFBM4DF-CDAFxx (continuous-flex)	
MPAI-A/Bxxxx		High-resolution encoder			
MPS-A/Bxxxx-M/S		-			
MPAS-A/Bxxxx-V/A					
MPL-A/B15xxx-V/Ex7xAA, MPL-A/B2xxx-V/Ex7xAA					
MPL-A/B15xxx-Hx7xAA, MPL-A/B2xxx-Hx7xAA					
MPL-A/B3xxx-Hx7xAA, MPL-A/B4xxx-Hx7xAA, MPL-A/B45xxx-Hx7xAA LDAT-SxxxxxxxBx		Incremental encoder	N/A	2090-XXNFMF-Sxx (standard) 2090-CFBM7DF-CDAFxx	<u>page 78</u>
MPL-A/B3xxx-M/Sx7xAA, MPL-A/B4xxx-M/Sx7xAA, MPL-A/B45xxx-M/Sx7xAA	Circular (Speedtec)			(continuous-flex)	
MPM-A/Bxxxxx-M/S	DIN	High-resolution encoder			
MPF-A/B <i>xxxx</i> -M/S					
MPAR-A/B1xxxx and MPAR-A/B2xxxx (series B)					
LDAT-Sxxxxxx-xDx		Absolute Linear Encoder Feedback		2090-CFBM7DF-CEAAxx or 2090-CFBM7DD-CEAAxx (standard, non-flex) 2090-CFBM7DF-CEAFxx 2090-CFBM7DD-CEAFxx (continuous, flox)	
TIV_0 vvvv_R			-		
ΤΙ ΔΡ-Δγγγγγ	Circular	High-resolution encoder		2090-CFBM6DF-CBAAxx	nage 78
	Plastic	Incremental encoder		(standard)	<u>page 70</u>
	1				

Flying-lead Feedback Cable Pin-outs

Connector Pin	High-resolut	ion Feedback	Incremental Feedback	Drive MF
	9V Encoder	5V Encoder	5V Encoder	connector Pin
1	Sin+	Sin+	AM+	1
2	Sin-	Sin-	AM-	2
3	Cos+	Cos+	BM+	3
4	Cos-	Cos-	BM-	4
5	Data+	Data+	IM+	5
6	Data-	Data-	IM-	10
9	Reserved	EPWR_5V	EPWR_5V	14
10	Reserved	ECOM	ECOM	6
11	EPWR_9V	Reserved	Reserved	7
12	ECOM	Reserved	Reserved	6
13	TS+	TS+	TS+	11
14	TS-	TS-	TS-	-
15	Reserved	Reserved	S1	12
16	Reserved	Reserved	S2	13
17	Reserved	Reserved	S3	8

Table 34 - 2090-XXNFMF-Sxx or 2090-CFBMxDF-CDAFxx Feedback Cable

Table 35 - 2090-CFBM6DF-CBAAxx Feedback Cable

	High Resolution	Incremental Feedback	- Drive MF Connector Pin	
Connector Pin	TLY-Axxxx-B TLAR-Axxxxx	TLY-Axxxx-H		
6	BAT+	Reserved	BAT+	
9		AM+	1	
10	Pecerved	AM-	2	
11	- Reserved	BM+	3	
12		BM-	4	
13	DATA+	IM+	5	
14	DATA-	IM-	10	
15		S1	12	
17	Reserved	52	13	
19		53	8	
22	EPWR 5V	EPWR 5V	14	
23	ECOM and BAT-	ECOM	6	
24	Shield	Shield	Connector housing	

Wiring the Feedback and I/O Connectors

These procedures assume you have mounted your Kinetix 300 system, completed the power wiring, and are ready to connect motor feedback.

Wire the I/O Connector

Connect your I/O wires to the IOD connector by using the 2097-TB1 I/O Terminal Expansion Block. See the Kinetix 300 I/O Terminal Expansion Block Installation Instructions, publication <u>2097-IN005</u>.

Wire the Low-profile Connector Kit

The 2090-K2CK-D15M low-profile connector kit is suitable for terminating flying-lead motor feedback cables. Use it with the Kinetix 300 drive and all motors with incremental or high-resolution feedback. It has a 15-pin, male, D-sub connector and is compatible with all Bulletin 2090 feedback cables.

TLY-Axxxx-B rotary motors and TLAR-Axxxxx electric cylinders also require the 2090-DA-BAT2 battery to back up the high-resolution encoder.

Shunt Resistor Connections

Follow these guidelines when wiring your 2097-Rx shunt resistor.

IMPORTANT	When tightening screws to secure the wires, see the tables beginning on <u>page 65</u> for torque values.

IMPORTANT To improve system performance, run wires and cables in the wireways as established in <u>Chapter 2</u>.

- See <u>Shunt Resistors</u> on page <u>32</u> for noise zone considerations.
- See <u>Shunt Resistor Wiring Example</u> on page 175.
- See the installation instructions provided with your Bulletin 2097 shunt resistor, publication <u>2097-IN002</u>.

Ethernet Cable Connections This procedure assumes you have your Logix Ethernet/IP module and Kinetix 300 drive mounted and ready to connect the network cables.

The EtherNet/IP network is connected by using the Port 1 connector. See page 36 to locate the Ethernet connector on your Kinetix 300 drive. See the figure below to locate the connector on your Logix communication module.

Shielded Ethernet cable is available in lengths up to 78 m (256 ft). However, the total length of Ethernet cable connecting drive-to-drive, drive-to-controller, or drive-to-switch must not exceed 100 m (328 ft).

If the entire channel is constructed of stranded cable (no fixed cable), then this is the equation for calculating maximum length:

Maximum Length = (113-2N)/y, meters where N = the number of connections in the channel and y = the loss factor compared to fixed cable (typically 1.2...1.5).

Figure 49 - CompactLogix Ethernet Port Location

CompactLogix Controller Platform 1769-L23E-QB1B Shown

The Port 1 Ethernet connection is used for connecting to a web browser and configuring your Logix module.

Figure 50 - Ethernet Wiring Example - External Switch

MotionView Software Configuration

Торіс	Page
Drive Organizer and Identification	84
Motor Category	84
General Category	87
Communication Categories	91
Input/Output Categories	93
Limits Categories	95
Dynamics Category	97
Tools Category	98
Monitor Category	99
Faults Category	100
Indexing Category	101
Homing Category	113
Upgrade Firmware	124

Drive Organizer and Identification

[

On the left side of MotionView software is the Drive Organizer. The Drive Organizer displays the node address for the drives that are currently connected to the software and lists the categories for each drive under the drive node address. This section contains a description of the parameters displayed in each category listed in the Drive Organizer.

Drive Identification displays the drive IP address and status. The dialog box displays drive identification information such as catalog number and firmware revision. In this window, you can assign the Drive Name and the Group ID.

Prive Identification ———	• [192.168.124.200] : DISABLED		
	Motor	Description	Value
	Communication	Drive ID String	B12154140100020
	Ethernet	Device Family	B12
		Firmware Revision	1.54
	Digital IO	Vector Processor Revision	1.40
Drive	Analog ID Pumite Velocity Limits Position Limits Dynamics Indexing Homing Tools Monitor Faults	Hardware Revision	1.00
Organizer		Deviation Revision	020
		MotionView OnBoard Revision	3.48
		Motor Database Revision	006
		Serial Number	45290949
		Catalog Number	2097-V33PR6
		Product Code	280
		Drive Name	
		Group ID	0
	Successfully connected to drive :: B121541	4 IIII 40100020_192.168.124.200	

Table 36 - Drive Identification Category

ID	Parameter Name	Description	Value/Notes
1	Drive ID String	Drive identification string	B12 154 140 100 020 Device Firmware Vector Hardware Deviation Family Revision Revision Revision
2	Drive Name	Drive symbolic name	Up to 20 user-defined characters
3	Serial Number	Drive serial number	Unique number assigned to drive at the factory
57	Group ID	Network group ID. Allows the assignment of different drives into logical groups.	Range: 132767
N/A	Motor Database Revision	The motor database resides in the drive firmware.	006 in this example

Motor Category

Allen-Bradley motors and actuators with intelligent feedback devices are automatically populated into the motor configuration. In this example, no motor is attached to the drive.

Motors	Vendor : Allen-Bradley Motor	➡ Motor Model :	MPL-A1510V-Hxx2	🛨 ID: 693
Motor Database	Electric		Feedback	
Custom Motor	Rt (Torque Constant)	0.373 Nm7A		0000
Motor Database	Ke (Voltage Constant);	V/KBpm	PPR before quad	2000
Custom Motor	(p-p.Sine Peak)		Halls order	3
	Lm (Inductance phase-phase)	23 mH	Inverted	
	Rm (Resistance phase-phase)	46 Ohm	B leads A for CW	
	Nominal phase current	0.74000001 Amp	Thermal	
	Intermittent Current	2.400000095 Amp	Rt (W-A)	2.2 C/W
		225	Ct (W-A)	111 W-s/C

Synchronous Motor Database

For Allen-Bradley synchronous motors and actuators with incremental encoders, click Change Motor and choose the device from the Synchronous>Motor Database. In this example, the MPL-B320P-H motor is configured.

Motors Synchronous	Vendor :	Allen-Bradley Motor	- N	lotor Model		MPL-A1510V-Hxx2	▼ ID : 693
Motor Database Custom Motor Custom Motor Motor Database Custom Motor	Electrical Lm (I Bm (F	Kt (Torque Constant) Ke (Voltage Constant), (p-p, Sine Peak) nductance phase-phase) Resistance phase-phase) Nominal phase current Intermittent Current Intermittent Current Jominal Drive Bus Voltage Number of poles	0.373 13.03 23 46 0.74000001 2.40000095 325 8	Nm / A V / KRpm mH Ohm Amp Amp Vdc	•	Feedback PPR before quad 20 Halls order 3 Inverted B leads A for CW Thermal Rt (W-A) 2.2 Ct (W-A) 11	000
	Mechanica Jm (al Rotor Moment of Inertia) Maximum Velocity	0.000007 8000	Kgm2 RPM	-		
		Create Custo	m	Open F	ile	Update Drive	Cancel

Table 37 - Motor Category

ID	Parameter Name	Description Value/Notes		
10	Motor ID	Motor serial number (for Rockwell Automation motor)		
11	Motor Model	Motor catalog number (for Rockwell Automation	motor)	
12	Motor Vendor	Rockwell Automation		
14	Halls Order	Hallcode index	Range: 05	
18	Jm	Motor moment of inertia	Range: 0 0.1 Kg-m ²	
19	Ке	Motor voltage or back EMF constant	Range: 1500V/K rpm	
20	Kt	Motor torque or force constant	Range: 0.0110 N-m/A	
21	Lm	Motor phase-to-phase inductance	Range: 0.1500 mH	
22	Rm	Aotor phase-to-phase resistance Range: 0.01500 Ω		
23	Nominal Phase Current	Motor max current (RMS)	Range: 0.550 A	
24	Maximum Velocity	Motor max velocity Range: 50020,000 rpm		
25	Number Of Poles	Motor number of poles	Range: 2200	
26	PPR Before Quad	Encoder resolution	Range: 256 to (65536 x12/Npoles) expressed in PPR	
27	Nominal Drive Bus Voltage	Nominal motor terminal voltage	Range: 50800V	
646	Rt	Thermal resistance	Range: 010000000 C/W	
647	Ct	Thermal capacitance	Range: 01000000 W-s/C	

Motor Datab

Linear Motor Database

192.16

For Allen-Bradley motors and actuators with incremental encoders, click Change Motor and choose the device from the Linear>Motor Database. In this example, the LCD-C030100-DHTxxA linear motor is configured.

X

Motors	Vendor: Allen-Bradley Linear	-	Motor Model :	LDC-C030100-DHTxxA 🗸 ID : 1018
Motor Database	Electrical			Feedback
Custom Motor	Kf (Force Constant)	25.74	N/A (RMS)	▼ Encoder
Linear Motor Database	Ke (back EMF, L-L (RMS))	14.86099593	V/m/s	Resolution (x1) 20.0 um
Custom Motor	Lm (Inductance phase-phase)	21.6	mH	Resolution (x4) 5.0 um
	Rm (Resistance phase-phase)	2.3	Ohm	Halls order 3
	Nominal phase current	2.900000095	Amp	Planda A factorized
	Intermittent Current	8.56000042	Amp	
	Nominal Drive Bus Voltage	680	Vdc	Thermal
	Pole pitch	50	mm	▼ Rt (W-A) 2.24 C/W
	Mechanical			Ct (W-A) 1205 W-s/C
	Motor block mass	1.28	Kg	
	Maximum Velocity	10	m/s	
	<u> </u>			
	Create Cu	tom	Open Fi	le Undate Drive Cancel

Table 38 - Linear Motor Category

ID	Parameter Name	Description	Value/Notes	
10	Motor ID	Motor serial number (for Allen-Bradley motor)		
11	Motor Model	Motor catalog number (for Allen-Bradley motor)		
12	Motor Vendor	Allen-Bradley		
14	Halls Order	Hallcode index	Range: 05	
243	Motor Block Mass	Motor block mass	Range: 0 100 kg	
244	Kf	Linear motor force constant	Range: 11000 N/A rms	
245	Ке	Motor voltage or back EMF constant	Range: 1500V rms/m/s	
21	Lm	Motor phase-to-phase inductance	Range: 0.1500 mH	
22	Rm	Motor phase-to-phase resistance	Range: 0.01500 Ω	
23	Nominal Phase Current	Motor max current (RMS)	Range: 0.5 50 A	
24	Maximum Velocity	Motor max velocity	Range: 0 10 m/s	
240	Pole Pitch	Pole pitch	Range: 2200 mm	
246	Resolution (x1)	Linear encoder resolution	Range: 0.4 40 μm	
27	Nominal Drive Bus Voltage	Nominal motor terminal voltage	Range: 50800V	
650	Intermittent Current	Intermittent current	Range: 0100 A	
646	Rt	Thermal resistance	Range: 010000000 C/W	
647	Ct	Thermal capacitance	Range: 01000000 W-s/C	

General Category

The General category provides access to the basic configuration of motion. The parameters displayed will depend on the motor type chosen in the Motor Category.

[192.168.0.9] : D	55				
General	Description	Value		Units	Min
 Communication 	Drive Mode	Master Gearing	-		
Ethernet EtherNet/IP/C	Current Limits				
● IO	Current Limit	8 4 8 9 9 9 9 8		Δ	0 0000
Digital IO	9 KH7 Peak Current Limit	26.9700009		A	0.0000
Analog IO		20.0700000		~	0.0000
Velocity Limits	Current Output Clamp	400.0000		70	0.0000
Position Limits	Velocity Mode Acceleration				
- Dynamics - Indexing	Enable Accel / Decel Limits	Disable			
Homing	Appel Limit	1000.0000		RPM / Sec	0 1000
Tools	P 11:	1000.0000		REM/ Sec	0.1000
Faults	Decei Limit	1000.0000		HEMI/ Sec	0.1000
	Fault Reset	Manual Only	•		
	Motor Temperature Sensor	Enable	-		
	MASTER ENCODER : Master To Syst	em Ratio			
	Master	1			-32768
	System	1			1
		ъł	-		
	User Units	0.0200		Revolutions / Units	0.0000
	Rotary Unwind				
	Enable Rotary Unwind				
	User Units Per Unwind	1.0000		User Units	0.0000
	Negative Motion Polarity				
• IIII		- ÜÜ			

Figure 51 - General Category for Synchronous Motors

Table 39 - General Category for Synchronous

ID	Parameter Name	Description	Value/Notes	
30 (1)	Current Limit	Continuous RMS current for motor selected	User may lower this value. This lets you trigger a motor current alarm. However, the drive will not limit the actual current to the motor. The actual RMS current limit to the motor is not configurable.	
32 ⁽¹⁾	8 kHz Peak Current Limit	Peak current limit for 8 kHz operation (based on motor selected)	User may lower this peak value to limit current to motor. Do not set below the RMS Current for motor (tag #30).	
39	Motor Temperature Sensor	Motor thermal protection function	0 = Disable 1 = Enable	
75 ⁽²⁾	Enable Accel/Decel Limits	Enable Accel/Decel function/limits for Velocity mode	0 = Disable 1 = Enable	
76 ⁽²⁾	Accel Limit	Accel value for Velocity mode	Range: 0.15,000,000 rpm/s	
77 ⁽²⁾	Decel Limit	Decel value for Velocity mode	Range: 0.15,000,000 rpm/s	
78	Fault Reset	Reset fault configuration	Manual Only On Disable	
79	Master	Master to system ratio (numerator)	Master counts range: -32767+32767	
80	System	Master to system ratio (denominator)	System counts range: 132767	
266	Drive Mode	Sets the mode of operation for the drive	0 = Auto Tune4 = Analog Velocity Input1 = EtherNet/IP External Reference5 = Analog Current Input2 = Master Gearing6 = Indexing3 = Step and Direction6	
181	User Units	User units	Revolutions of motor per user unit	
672	Current output clamp	Value to clamp output current, measured in percentage of motor rated current	Range: 0400%	
670	Enable rotary unwind	Enable rotary unwind for rotary motors. When rotary unwind is used with a motor with an absolute encoder, the position will be restored with in the unwind cycle. These modes are available as Index Types in indexing mode or as a Reference Source in EtherNet/IP operation mode.	0 = Unchecked = Disable 1 = Checked = Enable Rotary Unwind is designed only for these modes: • Rotary Absolute • Rotary Incremental • Rotary Shortest Path • Rotary Positive • Rotary Negative Rotary unwind mode in conjunction with Blended or Registered moves is not supported.Attempting to use these move options without having configured rotary unwind will result in a drive fault.	
671	User units per unwind	Number of revolutions in 1 user unit.	Range: 01000000	
8	Negative motion polarity	Inverts the motion polarity	0 = Unchecked =Normal 1 = Checked =Reverse Step and Direction and Gear based modes and position based moves, such as incremental, absolute, as well as velocity based jogs obey the motion polarity. Current based operating modes do not obey the motion polarity. The drive must be disabled to change the motion polarity.	

(1) By default, these values are set based on the configured motor. If these values are set lower than the motor capabilities, the drive will report CurrentLimitStatus in the EtherNet/IP Input assembly at the new value, but will not clamp the current output until it reaches the motor peak current.

(2) These values apply only if the drive is in Velocity mode over EtherNet/IP External Reference. In Indexing mode, the limits within the individual indexes apply. In Positioning mode, over EtherNet/IP External Reference, the limits in the Output Assembly apply.

● [10.82.50.26] : DI				
General	Description	Value	Units	Min
Communication	Drive Mode	Indexing 👻		
● Ethernet EtherNet/IP (Cl	Current Limits			
	Current Limit	2.9000001	А	0.0000
Analog IO	8 KHZ Peak Current Limit	8.5600004	А	0.0000
Limits Velocity Limits	Current Output Clamp	400.0000	%	0.0000
Position Limits Dynamics	Velocity Mode Acceleration			
Indexing	Enable Accel / Decel Limits	Disable 🔻		
Homing	Accel Limit	1000.0000	RPM / Sec	0.1000
Monitor	Decel Limit	1000.0000	RPM / Sec	0.1000
and the second	Fault Reset	Manual Only 👻		
	Motor Temperature Sensor	Disable 👻		
	MASTER ENCODER : Master To Sy	ystem Ratio		
	Master	1		-32768
	System	1		1
	Measure Units	0 - mm 💌		
	User Units Scaling	1.0000		0.000101
	Negative Motion Polarity			
• •	X	100		

Figure 52 - General Category for Linear Motors

Table 40 - General Categ	ory for Linear Motors
--------------------------	-----------------------

ID	Parameter Name	Description	Value/Notes	
30 ⁽¹⁾	Current Limit	Continuous RMS current for motor selected	User may lower this value. This lets you trigger a motor current alarm. However, the drive will not limit the actual current to the motor. The actual RMS current limit to the motor is not configurable.	
32 ⁽¹⁾	8 kHz Peak Current Limit	Peak current limit for 8 kHz operation (based on motor selected)	User may lower this peak value to limit current to motor. Do not set below the RMS Current for motor (tag #30).	
39	Motor Temperature Sensor	Motor thermal protection function	0 = Disable 1 = Enable	
75 ⁽²⁾	Enable Accel/Decel Limits	Enable Accel/Decel function/limits for Velocity mode	0 = Disable 1 = Enable	
76 ⁽²⁾	Accel Limit	Accel value for Velocity mode	Range: 0.15,000,000 m/s ²	
77 ⁽²⁾	Decel Limit	Decel value for Velocity mode	Range: 0.15,000,000 m/s ²	
78	Fault Reset	Reset fault configuration	Manual Only On Disable	
79	Master	Master to system ratio (numerator)	Master counts range: -32767+32767	
80	System	Master to system ratio (denominator)	System counts range: 132767	
266	Drive Mode	Sets the mode of operation for the drive	0 = Auto Tune4 = Analog Velocity Input1 = EtherNet/IP External Reference5 = Analog Current Input2 = Master Gearing6 = Indexing3 = Step and Direction6	
672	Current Output Clamp	Value to clamp output current, measured in percentage of motor rated current	Range: 0400%	
676	User Units Scaling	Shows how many user units in one Measure unit	Range: 11000000	
678	Measure Units	Measure units	$0 = \mu m$ 1 = m 2 = in.	
8	Negative Motion Polarity	Inverts the motion polarity	0 = Unchecked =Normal 1 = Checked =Reverse Step and Direction and Gear based modes and position based moves, such as incremental, absolute, as well as velocity based jogs obey the motion polarity. Current based operating modes do not obey the motion polarity. The drive must be disabled to change the motion polarity.	

(1) By default, these values are set based on the configured motor. If these values are set lower than the motor capabilities, the drive will report CurrentLimitStatus in the EtherNet/IP Input assembly at the new value, but will not clamp the current output until it reaches the motor peak current.

(2) These values apply only if the drive is in Velocity mode over EtherNet/IP External Reference. In Indexing mode, the limits within the individual indexes apply. In Positioning mode, over EtherNet/IP External Reference, the limits in the Output Assembly apply.

Communication Categories

The communication categories provide access to setting the IP address for your drive and object parameters used in the Input and Output Assembly EtherNet/IP data links.

Ethernet Communication

The Ethernet category provides access to the IP address configuration. You can configure your drive to obtain the IP address automatically (by using DHCP) or set the values manually.

Motor General Communication Ethernet	Configure IP Address		
EtherNet/IP (CIP)	IP Address	192.168.124.200	
Digital IO	Subnet Mask	255.255.255.0	
Analog IO	Default Gateway	192.168.124.1	
Velocity Limits		19 <mark>11</mark>	
Position Limits			
– Dynamics 📃 🥃			

Table 41 - Ethernet Communication Category

ID	Parameter Name	Description	Value/Notes
67	IP address	Ethernet IP address	IP address changes at next powerup. 32 bit value.
68	Subnet Mask	Ethernet IP NetMask	Mask changes at next powerup. 32 bit value.
69	Default Gateway	Ethernet Gateway IP address	Address changes at next powerup. 32 bit value.
70	Obtain IP Address using DHCP	Use DHCP	Checked = Use DHCP service Unchecked = Manual

Ethernet (CIP) Communication

The EtherNet/IP (CIP) category provides access to the modifiable drive object parameters that are used in the Input and Output Assembly EtherNet/IP data links.

Motor	De	escription	Value	Di
General		sociption	Fullo	0,
Communication				
 Ethernet 	Input Assembly	/ Links		
EtherNet/IP (CIP)	Enable	Description	Parameter ID Number	Units
Digital IO		Link A	100	RAM Integer (4 Bytes)
Analog IO		Link B	101	RAM Integer (4 Bytes)
Velocity Limits		Link C	102	RAM Float (4 Bytes)
Position Limits		Link D	103	RAM Float (4 Bytes)
Indexing				
Haming	1. St.			
Homing				
Tools	Output Assemb	ly Links		
- Tools - Monitor	Output Assemb Enable	Description	Parameter ID Number	Units
-Tools Monitor Faults	Output Assemb Enable	bly Links Description Link A	Parameter ID Number	Units RAM Integer (4 Bytes)
- Tools - Monitor - Faults	Output Assemb	bly Links Description Link A Link B	Parameter ID Number	Units RAM Integer (4 Bytes) RAM Integer (4 Bytes)
- Tools - Monitor - Faults	Output Assemb	Dy Links Description Link A Link B Link C	Parameter ID Number 104 105 106	Unite RAM Integer (4 Bytes) RAM Integer (4 Bytes) RAM Float (4 Bytes)
- Tools - Monitor - Faults	Output Assemb	Dy Links Description Link A Link B Link C Link D	Parameter ID Number 104 105 106 107	Units RAM Integer (4 Bytes) RAM Integer (4 Bytes) RAM Float (4 Bytes) RAM Float (4 Bytes)

The Enable parameters determine if the parameter should be copied into or out of the assembly.

Table 42 - Ethernet (CIP) Communication Category

ID	Parameter Name	Description	Value/Notes		
249	Enable - Input Assembly	Datalink A for input assembly	UserDefinedIntegerData0		
250	LIIIKS	Datalink B for input assembly	UserDefinedIntegerData1		
251	51 52	Datalink C for input assembly		UserDefinedIntegerReal0	
252		Datalink D for input assembly	UserDefinedIntegerReal1		
253	Enable - Output	Datalink A for output assembly	UserDefinedIntegerData0		
254		Datalink B for output assembly	UserDefinedIntegerData1		
255		Datalink C for output assembly	UserDefinedIntegerRealO		
256		Datalink D for output assembly	UserDefinedIntegerReal1		

Input/Output Categories

The Input/Output categories provide access to the configuration of the modifiable Digital I/O and Analog I/O parameters.

Digital I/O

IMPORTANT Drive object parameters of type DINT can be used only in the RAM integer data links, parameters of type REAL can be used only in the RAM float data links.

Hard Limit Polarity

N. Open

•

Motor	Description	Value	Des	cription	Value
General General Communication Communication Communication Communication EtherNet/IP (CIP) O IO Digital IO Analog IO Cuints Velocity Limits Position Limits Dynamics Indexing Horning Tools Monitor Faults	Description	Value Not Assigned	Des Des Input A2 Debounce T Input A3 Debounce T Input A4 Debounce T Input B1 Debounce T Input B3 Debounce T Input B4 Debounce T Input C1 Debounce T Input C2 Debounce T	comption Firme 0 Firme 0	Value
	Output 2 Function Output 3 Function Output 4 Function Input A1 Debounce Time	Not Assigned Not Assigned Not Assigned 0	Input C3 Debounce T Input C4 Debounce T Hard Limit Switches Enable Switch Funct Brake Engage Delay Brake Release Delay	Time 0 Fime 0 Action Not Assigne ion Inhibit r 160 v 110	d -

Table 43 - Digital I/O Category

ID	Parameter Name	Description	ID	Parameter Name	Description
29	Enable Switch Function	Configuration of the enable digital input A3. 0 = Inhibit only. Must be asserted before the drive can be enabled. 1 = Run. Enables drive when asserted.	624	Input A4 Function	Configuration of the specific function for the individual digital inputs, pre-assigned inputs such as Enable and Registration are not configurable. 1 = Abort Index 2 - (Percented)
84	Hard Limit Switches Action	Configuration of the action to take when the limit switches are asserted. 0 = Not used 1 = Disable and coast 2 = Ramped Decel and Disable	take when the limit 625 Input B1B4 Function 628 e		$ \begin{array}{l} 2 &= (\operatorname{heset})^{2} \\ 3 &= \operatorname{Start} \operatorname{Index} \\ 4 &= \operatorname{Define} \operatorname{Home} \\ 5 &= \operatorname{Abort} \operatorname{Homing} \\ 6 &= \operatorname{Start} \operatorname{Homing} \\ 7 &= \operatorname{Fault} \operatorname{Reset} \end{array} $
189 192	Input A1A4 de-bounce time	Debounce time (01000 ms) of the individual digital inputs.	629	Input C1 Function	8 = Index Select 0 9 = Index Select 1 10 = Index Select 2
193 196	Input B1B4 de-bounce time		630	Input C2 Function	11 = Index Select 3 12 = Index Select 4 Configure Home Sensor input from Homina Category
197 200	Input C1C4 de-bounce time	*	631	Input C4 Function	configure forme sensor input form forming category.
201	Output 1 Function (OUT1)	Configuration of the specific function for the	651	Brake Engage Delay	Time (ms) from when the drive is disabled to the time that
202	Output 2 Function (OUT2)	Individual digital outputs. 0 = Not Assigned 1 = Zero Speed 2 = In Speed Window 3 = Current Limit	_		motion is stopped and brake is engaged.
203	Output 3 Function (OUT3)		652	Brake Release Delay	Time (ms) from when the drive is enabled to the time that motion is allowed to begin (brake is released).
204	Output 4 Function (OUT4)	4 Function (OUT4) 4 = Run time fault 5 = Ready 6 = Brake 7 = In position			

Analog I/O

Allen-Bradley	Kinetix 3	00	Enç	glish 🔻 📕	Rockwe
Connect	Disconnect	Save Connection	Load Connection	S	top/Reset
Print	Save Configuration	Load Configuration	Restore Defaults		
Upgrade					
) [192.168.124.200] :					
- Motor General	C C	Description	Value		Units
© Communication	Analog Output		Not Assigned		
Ethernet Ethernet	Analog Output (Cur	rrent Scale)	1.0000		Volt / Am
● IO	Analog Output (Vel	locity Scale)	1.0000		mV/BPN
Digital IO	Analog Input (Curre	ent Scale)	0.8500		A / Volt
Analog IO Limits	Analog Input (Velo	city Scale)	100.0000		RPM / Vo
Velocity Limits	Analog Input Dead-	-Band	0		mV
Position Limits	Analog Input Offset		0	<<	mV
Indexing					
	4	- 4000			

Table 44 - Analog I/O Category

ID	Parameter Name	Description	Value/Notes
35	Analog Input (current scale)	Analog input #1 current reference scale	Range: - X+X Amps/Volt X = drive peak output current/10
36	Analog Input (velocity scale)	Analog input #1 velocity reference scale	Range: -10,000+10,000 rpm/Volt
85	Analog Output	Analog output function	0 = Not assigned 1 = Phase Current (RMS) 2 = Phase Current (Peak Value) 3 = Motor Velocity 4 = Phase Current U 5 = Phase Current V 6 = Phase Current W 7 = Iq current 8 = Id current
86	Analog Output (velocity scale)	Analog output scale for velocity quantities	Range: 010 mV/rpm
87	Analog Output (current scale)	Analog output scale for current related quantities	Range: 010 V/A
89	Analog Input Dead- Band	Analog input #1 dead-band. Applied when used as current or velocity reference	Range: 0100 mV
90	Analog Input Offset	Analog input #1 offset. Applied when used as current/velocity reference	Range: -10,000 + 10,000 mV

Limits Categories

The Limits categories provide access to the configuration of the modifiable velocity and position limit parameters.

Velocity Limits

Allen-Bradley	Kinetix 3	00	Englis	h - Rockwe Automatio
Connect	Disconnect	Save Connection	Load Connection	Stop/Reset
Print	Save Configuration	Load Configuration	Restore Defaults	
Upgrade				
 [192.168.124.200] : - Motor General Communication Thernet 	Zero Speed	escription	Value	Units User Units / Sec
EtherNet/IP (CIP) IO Digital IO Analog IO	Speed Window At Speed		1.6000	User Units / Sec
Limits Velocity Limits Position Limits	•			
	4	SHIII:		

Table 45 - Velocity Limits Category

ID	Parameter Name	Description	Value/Notes
58	Zero Speed	Value in user units/s below which the drive will set the Zero Speed Digital Output (if configured) and the VelocityStandstillStatus bit in the EtherNet/IP Input Assembly.	Range: 0 100 rpm
59	Speed Window	Value in user units/s for the target velocity for which the drive will set the In-Speed Window Digital Output (if configured) and the VelocityLockStatus bit in the EtherNet/IP Input Assembly.	Range: 1010000 rpm
60	At Speed	The range in user units/s around the At Speed for setting the In-Speed Window Digital Output (if configured) and the VelocityLockStatus bit in the EtherNet/IP Input Assembly.	Range: -10000+10000 rpm

Position Limits

Allen-Bradley	Kinetix 3	00		English	- Rocky Automat
Connect	Disconnect	Save Connection	Load Connection		Stop/Reset
Print	Save Configuration	Load Configuration	Restore Defaults		
Upgrade					
[192.168.0.9] : DISA	4E 🔦				
– Motor – General	C	Description	Value		Units
Communication	Position Error		32767		Counts
Ethernet EtherNet/IP (CIP)	Max Error Time		100.0000		ms
010	Abort Decel		100.0000		User Units / Sec ²
Digital IO	"In Position" Limit		0.1000		User Units
) Limits	Soft Motion Li	mits			
Velocity Limits Position Limits	Soft Limits		Off	•	User Units
Dynamics	Positive Limit		0.0000		User Units
-Indexing Homing	Negative Limit		0.0000		User Units
Tools	×				

Table 46 - Position Limits Category

ID	Parameter Name	Description	Value/Notes
62	Max Error Time	The amount of time that the drive can be outside of the Position Error before the drive asserts an Excess Position Error Fault.	Range: 0.258000 ms
178	Abort Decel	The deceleration rate that the drive will use to bring the motor to a stop when either the Abort Homing or Abort Index Digital Inputs is asserted (if configured) or either the AbortIndex or AbortHoming bit is set in the EtherNet/IP Output Assembly.	User units/s ²
179	Position Limit	The tolerance around the commanded position inside of which the drive will set the PositionLockStatus bit in the EtherNet/IP Input Assembly.	User units
217	Position Error	The tolerance around the commanded position outside of which the drive will assert a Excess Position Error Fault when the Max Error Time is exceeded.	Encoder counts
218	Soft Limits ⁽¹⁾	Off or On depending if software travel limits should be used.	0 = Off 1 = Disable and Coast 2 = Ramped Decel and Disable
219	Positive Limit	If Soft Limits are On, the position that when reached, the drive will assert a Software	User units
220	Negative Limit	Overtravel lault.	User units

(1) Soft Limits parameters can only be used in Positioning mode.

Dynamics Category

The Dynamics category provides access to the configuration of the modifiable dynamics parameters.

MotionView OnBoard 3.5	Kinetix 3	ISABLED		English	•	Rockwell Automation
Connect	Disconnect	Save Connection	Load Connection			Stop/Reset
Print	Save Configuration	Load Configuration	Restore Defaults			
Upgrade						
[192.168.0.9] : DIS Motor General	AF	cription	Value			Units
© Communication	Velocity P-Gain		9639.3203125			
Ethernet EtherNet/IB (CIP)	Velocity I-Gain		561.0250244			
 EtherNet/IP (CIP) IO 	Position P-Gain		1435.8393555			
Digital IO	Position I-Gain	[0.0000			
 Limits 	Position D-Gain	[365.7369995			
Velocity Limits	Position I-Limit		0.0000	F		RPM
Dynamics	Gain Scaling -3					
- Tools - Monitor - Faults	Autotuning Set Default Ga	ins				Ē
	Feedback Filter	[On	-		
	Feedback Filter Time	Constant	2.0000			ms
	Filter 1					
	Туре		Low Pass			
	Cut-off Frequency		200.0000			Hz
	Filter 2					
	Туре		Resonator			
	Center Frequency		200.0000			Hz
	Bandwidth		50.0000			Hz
	Gain		-10.0000			dB
• •	•	init .				•
Successfully connected to di	rive :: B12155141100020	_192.168.0.9				

Click Autotuning to begin autotuning.

Table 47 - Dynamics Category

ID	Parameter Name	Description	Value/Notes
44	Velocity P-Gain	The proportional and integral gain (respectively) of the velocity loops.	Range: 032767
45	Velocity I-Gain	physical units.	Range: 032767
46	Position P-Gain	The proportional, integral, and derivative gain (respectively) of the	Range: 032767
47	Position I-Gain	they are not physical units.	Range: 016383
48	Position D-Gain		Range: 032767
49	Position I-Limit	A clamping limit on the position loop I-gain compensator to prevent excessive torque overshooting caused by an over accumulation of the I-Gain.	Range: 0 20000
51	Gain Scaling	A 2x factor applied to the gains in the velocity loop useful for scaling the gains when using encoders with a high number of counts per revolution.	Range: -16+4

See the Servo Loop diagram on page 98 for more information on these parameters.

Tools Category

The tools category provides access to the oscilloscope and digitally monitor drive performance parameters.

Monitor Category

The monitor category provides access to pre-configured status information for the drive. This information is displayed in a floating window that updates in real time.

Description	Value	Units	General	
Motion			Enabled	C
Actual Velocity	0.0	User Units / Sec	At Fault	C
Actual Position	-2147483648.0	User Units	Undervoltage	C
Actual Position (EC)	0	EC	Current Limit	C
Target Position	-2147483648.0	User Units	Current Limit Folded	C
Target Position (EC)	0	EC	Regening	0
Registration Position	0.0	User Units	Motion	
Registration Position (EC)	0	EC	Homing	0
Position Error	0.0000	User Units	Indexing	0
Position Error (EC)	0	EC	Homed	0
ME counter	0	EC	In Position	
Drive Monitor			Motion Stack Full	C
Phase Current	0.00	A	Motion Stack Empty	
Bus Voltage	163	V	Motion Completed	
Heatsink Temperature	Less than 40	deg. C	Registration Triggered	
Analog IO			Motion Limits	
Analog Input	0.035	V	Positive Limit Switch	C
3			Negative Limit Switch	C
			EtherNet/IP (CIP)	
Inputs		Outputs	Exclusive Owner	0
A1-A4 🔿 🔿 I)) 1-4 (0000	Exclusive Owner Timeout	C
B1-B4 0 0 0	0		User Watchdog Timeout	C
			Cat on Tan	

Table 48 - Monitor Category

ID	Parameter Name	Description	Value/Notes
7	Actual Velocity	Actual measured motor velocity	UU/s
65	Inputs	Digital inputs states	A1 Input = Bit 0 A2 Input = Bit 1 A3 Input = Bit 2 A4 Input = Bit 3 B1 Input = Bit 4 B2 Input = Bit 5 B3 Input = Bit 6 B4 Input = Bit 7 C1 Input = Bit 8 C2 Input = Bit 9 C3 Input = Bit 10 C4 Input = Bit 11
66	Outputs	Digital outputs states. Writing to these variables sets or resets digital outputs that have not been assigned to a special function.	Output $1 = Bit 0$ Output $2 = Bit 1$ Output $3 = Bit 2$ Output $4 = Bit 3$
71	Analog Input	Analog Input AIN1 value	Volts
73	Bus Voltage	Measured Bus voltage	
74	Heatsink Temperature	Heatsink temperature	0 = Temperatures < 40 °C (104 °F) Actual heat sink temperature = Temperatures > 40 °C (104 °F)
182	ME Counter	Master Encoder (ME) input counter value, reset by writing zero or other value to the parameter.	Counts
183	Phase Current	Phase current	Amps

Table 48 - Monitor Category (continued)

ID	Parameter Name	Description	Value/Notes
184	Target Position (EC)	Target position	Encoder pulses
185	Actual Position (EC)	Actual position	Encoder pulses
186	Position Error (EC)	Position error	Encoder pulses
207	Registration Position (EC)	Registration position	Encoder counts
208	Registration Position	Registration position	User units
209	Target Position	Target position	User units
210	Actual Position	Actual position	User units
211	Position Error	Position error	Encoder counts

Faults Category

The Faults category provides access to the configuration of the modifiable fault parameters.

Allen-Bradley	Kinetix 300		English 👻	Rockwel Automation
Connect	Disconnect	Save Connection		Stop/Reset
Load Connection	Print	Save Configuration		
Load Configuration	Restore Defaults	Upgrade		
[192.168.124.200] : Motor General	Load Faults	Clear Fault Hi	story	Clear Faults
Communication Ethernet		500 N 5		
EtherNet/IP (CIP)	Fault Code	Device Time		
Digital IO Analog IO Tools Monitor Faults				
	4			

Table 49 - Faults Category

ID	Parameter Name	Description	Value/Notes
653	Last Fault Code	Fault E-code	Same fault code that is displayed on the servo drive display.
N/A	Device Time	The time since powerup of the drive that the fault occurred.	N/A
N/A	Load Faults	Recall the last 15 faults the drive reported.	N/A
N/A	Clear Fault History	Clear the fault history of the drive.	N/A
N/A	Clear Faults	Clear the current fault in the drive.	N/A

Indexing Category

The software for the onboard indexing operation is accessed via the MotionView software and is also configurable over the EtherNet/IP connection by using explicit messaging in RSLogix 5000 and RSLogix 500 software.

In Indexing mode, the Kinetix 300 drive begins executing indexes based on either a command received over the EtherNet/IP connection or immediately upon assertion of the hardware enable signal.

	MILEUX J	00	Eng	Automati
Connect	Disconnect	Save Connection	Load Connection	Stop/Reset
Print	Save Configuration	Load Configuration	Restore Defaults	
Upgrade				
[192.168.124.200] :	*			
- Motor General		Description	Value	Units
Communication	AutoStart Index		Disable	-
Ethernet	Start Index		0	
IO	Current Index		0	
Digital IO				
Analog IO	Start le	ndexing	Abort Indexing	Reset Index
Velocity Limits Position Limits				
Dynamics Indexing	H Index	00		
Homing	- H Index	01		

Table 50 - Indexing Category

ID	Parameter Name	Description	Value/Notes
267	AutoStart Index	Enable Auto Start index function for Indexing mode when drive becomes enabled	0 = Disable 1 = Enable
632	Start Index	Indexing starts from index specified	031
637	Current Index	Index currently executing. This tag is valid only in Indexing mode.	031

An index controls drive operation when Drive mode is set to Indexing in the General category. The drive starts indexing at the index whose number (0...31) is reflected in the cumulative binary values of the Index Select 0, 1, 2, 3, and 4 that are selected in the Digital Inputs category.

The digital input Index Select binary values are as follows:

- Index Select 0 = 1 if active, 0 if not.
- Index Select 1 = 2 if active, 0 if not.
- Index Select 2 = 4 if active, 0 if not.
- Index Select 3 = 8 if active, 0 if not.
- Index Select 4 = 16 if active, 0 if not.

If an Index Select is not assigned to a digital input, the Index Select is considered inactive.

When the Kinetix 300 drive is in Indexing mode the drive performs the required index based position move, for each index, according to the parameters shown below. The Kinetix 300 drive supports up to 32 indexes.

The drive validates the index table before execution. During validation, if the drive encounters an error such as index entries that contain invalid values, the drive issues a fault and does not allow execution of the index table until the anomaly has been corrected.

MotionView OnBoard	8.25 -::- [192.168.1	24.200] : DISABLED	γ			
Allen-Bradley	Kinetix 3	00		English	-	Rockwel Automatio
Connect	Disconnect	Save Connection	Load Connection		0	Stop/Reset
Print	Save Configuration	Load Configuration	Restore Defaults			
Upgrade						
[192.168.124.200] : - Motor	- Index 0	0		111		-
General	Index Type		Absolute	-		
Communication	Move		Trapezoidal	-		
EtherNet/IP (CIP)	Distance		0.0000			User Units
© 10	Register Distance		n/a			User Units
Digital IO Analog IO	Batch Count		1			
Limits	Dwell		0			ms
Velocity Limits Position Limits	Velocity		1.0000		č	Jser Units / Sec
Dynamics	Accel		10.0000	1	L	lser Units / Sec ²
Indexing Homing	Decel		10.0000		U	lser Units / Sec ²
Tools	Next Index		0			
Monitor Faults	Action		Stop	·		

Table 51 - Index 00...31

ID ⁽¹⁾	Parameter Name	Description	Value/Notes ⁽²⁾	
272	Index Type	Absolute with and without registration, incremental with and without registration, or blended incremental.	0 = Absolute6 = Rotary incremental1 = Incremental7 = Rotary shortest path2 = Registration absolute8 = Rotary positive3 = Registration incremental9 = Rotary negative4 = Blended10 = Current5 = Rotary absolute	
273	Move	Trapezoidal or S-curve.	0 = Trapezoidal 1 = S-curve	
274	Distance	The incremental distance to move or target position, based on the Index Type.	1268435.4560 User Units	
275	Register Distance			
276	Batch Count	How many times to execute index before moving on to the next index.	12147483647	
277	Dwell	The time to remain at position before moving on to the next index. This is not applied between batches. If Index Type is Current then Dwell is amount of time current level is applied.	065535 ms	
278	Velocity	The target speed when moving towards the new position. If the acceleration rate is too low, the axis may not actually reach the target velocity. If Index type is Current, then Velocity is % rated current applied.	0.000010,000,000.0000 User Units/s	
279	Accel	The rate to accelerate towards the configured velocity.	0.000010,000,000.0000 User Units/s	
280	Decel	The rate to decelerate towards zero-velocity from configured-velocity.	0.000010,000,000.0000 User Units/s	
281	Next Index	The next index to execute after the current index completes.	031	
282	Action	What to do when current index is complete.	0 = Stop 1 = Wait for start 2 = Next index	

(1) ID tag numbers in this example is for Index 00. See <u>Table 56 on page 111</u> and <u>Table 57 on page 112</u>.

(2) Numerical values (0 =, 1=, 2=, for example) for menu choices appear only in explicit messages sent when using RSLogix 5000 or RSLogix 500 software.

Index Type Parameter

You can set the Index Type parameter to:

- Absolute
- Incremental
- Registration Absolute
- Registration Incremental
- Blended
- Rotary Absolute
- Rotary Incremental
- Rotary Shortest Path
- Rotary Positive
- Rotary Negative
- Current

Absolute

Moves from its starting position to the specified Position, below. Note: The axis must be homed before the drive can execute an absolute index otherwise an E27 fault is asserted.

Incremental

Moves from its starting position the specified Distance

Registration Distance

Registration Distance is the relative distance the motor travels beyond the position when a registration digital input is detected. If the indexing configuration Type is set to Registration Absolute or Registration Incremental, you must also configure the Registration Distance parameter. In Registration Indexing mode, the drive moves the motor from its starting position the specified Distance, provided the registration sensor input is not detected. If the registration sensor input is detected, the move is adjusted such that the end position is determined by the Registration Distance setting.

Figure 54 - Registration Index Type

Blended

If the indexing configuration Type is set to Blended, the acceleration and deceleration parameters are not programmable. Instead, they are calculated internally by the drive based on distance and velocity between the two points of the move. The index table contains the position and velocities necessary to assemble the profile.

IMPORTANT The full profile is assembled by stitching together a sequence of positions and velocities rather than complete move operations.

Figure 55 - Example of Blended Indexing

Rotary Absolute

With an Rotary Absolute based move, the direction of travel depends on the current position of the motor and is not necessarily the shortest path to the end position. For starting positions less than the end position, within the unwind, the result is motion in the positive direction; while starting positions greater than the end position, within the unwind, results in motion in the negative direction.

The command position can be greater than the unwind value. Negative position values are equivalent to their corresponding positive values and are useful when rotating the axis through 0. For example, -90° is the same as +270°. When the position is greater than or equal to the unwind value, the axis moves through more than one revolution of the unwind before stopping at an absolute position. The actual position on each revolution through the unwind will start at zero regardless of the number of revolutions actually performed.

Rotary Absolute mode is only possible when Rotary Unwind mode is set up in the General category.

Figure 56 - Rotary Absolute Move

Rotary Incremental

With an Rotary Incremental based move, the direction of travel depends on polarity of the commanded position. Positive commands result in motion in the positive direction and negative commands result in motion in the negative direction.

The command position can be greater than the unwind value. When the position is greater than or equal to the unwind value, the axis moves through more than one revolution of the unwind before stopping. The actual position on each revolution through the unwind will start at zero regardless of the number of revolutions actually performed.

If your system has an absolute encoder, home the axis before initiating an absolute move otherwise the drive will fault with an E27.

Rotary Incremental mode is only possible when Rotary Unwind mode is set up in the General category.

Rotary Shortest Path

The Rotary Shortest Path move is a special type of Absolute move where the motor is moved to the commanded position within the unwind in whichever direction of travel is the shortest, moving through 0 degrees if necessary. With Rotary Shortest Path the motor will not more than 1 revolution of unwind before stopping at an absolute position.

Rotary Shortest Path mode is only possible when Rotary Unwind mode is set up in the General category.

Rotary Positive

The Rotary Positive move is a special type of Absolute move where the motor is moved to the commanded position within the unwind in the positive direction of travel moving through 0 degrees if necessary. With Rotary Positive move the motor will not move more than 1 revolution of unwind before stopping at an absolute position.

Rotary Positive mode is only possible when Rotary Unwind mode is set up in the General category.

Rotary Negative

The Rotary Negative move is a special type of Absolute move where the motor is moved to the commanded position within the unwind in the negative direction of travel moving through 0 degrees if necessary. With Rotary Negative the motor cannot be moved more than 1 revolution of unwind before stopping at an absolute position.

Rotary Negative mode is only possible when Rotary Unwind mode is set up in the General category.

Figure 59 - Rotary Negative Absolute Move

Current

The Kinetix 300 drive has a special indexing configuration type of Current that supplies a specified current for a fixed time as part of executing the index table. You are able to transition to this type of index without disabling the drive. When in this mode, the position and velocity loops do not engage. When transitioning from Current mode to Position or Velocity mode, the drive begins tracking commands with the current position or velocity of the drive. The drive will not attempt to correct for the movement of the motor while in Current mode.

When using Current Mode distance, velocity, acceleration, deceleration and batch count parameters are not programmable.

In this type of index the drive applies the specified current for the Dwell parameter number of milliseconds. All of the thermal protections continue to be active if the specified current exceeds the continuous current rating of the drive or motor. Figure 60 shows an example of a current index.

Figure 60 - Current Indexing

Action Parameter

You can set the Action parameter to Stop, Wait for Start, or Next Index.

Stop

This action stops and holds zero velocity while remaining enabled. Upon assertion of the Start Index digital input or the Start Motion bit in the EtherNet/ IP Output Assembly, the drive begins executing the index in the Index system parameter.

Wait For Start

This action waits for either the Start Motion bit to transition in the EtherNet/IP Output Assembly or for the Start Index configured digital input to perform an active transition.

Next Index

This action immediately moves to the next index as defined by the Next Index parameter.

Start Index

During powerup the Kinetix 300 drive does one of the following:

- Automatically start the indexing program upon enabling of the drive.
- Waiting for a digital input transition before starting the index.
- Waiting for a software signal over EtherNet/IP network before starting the index.

When the drive is configured for AutoStart Index, the drive begins executing the configured index immediately after the drive enables.

If the drive is not configured for AutoStart Indexing, the drive does not begin executing the configured index until either the Start Motion bit transitions in the EtherNet/IP Output Assembly or the digital input configured for Start Index is transitioned to an active state.

The configuration for Start Index requires setting the following parameters either over EtherNet/IP Explicit Messaging or through the MotionView software interface.

Table 52 - Start Index Configuration

ID	Parameter Name	Description	Value/Notes
N/A	Drive Mode	Set to [Indexing]	N/A
267	AutoStart Index	Enable Auto Start index function for Indexing mode when drive becomes enabled	0 = Disable 1 = Enable
632	Start Index	Indexing starts from index specified	031
29	EnableSwitchType	Enable switch function	0 = Inhibit only 1 = Run

Abort Indexing

An active state terminates an indexing sequence by decelerating to a stop and holding zero velocity while remaining enabled. No further indexing is executed until commanded by the user or controller.

The configuration for Abort Index can be set in the add-on profile or through MotionView software interface as a digital input.

Reset Index

Reset Index will set the current index to the Start Index

Explicit Messages for Indexing

The Kinetix 300 drive provides an EtherNet/IP assembly for configuring all parameters associated with a single index from within a single Explicit Message. To do this, make a User-Defined type in the RSLogix 5000 or RSLogix 500 program that follows the structure below. Send the User-defined type in a Set Attribute Single Explicit Message to class 4, instance 115 and attribute 3.

Figure 64 - Message Assembly Example

Message	Туре:	CIP Gene	ric		1	
Service Type: Service Code: Instance:	Set Attribute	e Single xx) Class: Attribute	• 4 (Hex) x 3 (Hex)	Source Element Source Length: Destination	K300_Node12 48 -	24Index - (Bytes)
Enable	🔾 Enable	Waiting Extend	Start ed Error Code:	🖲 Done	Done Length: 0	

Table 53 - Explicit Messaging for Indexing

RSLogix 5000 Field	Description
Index Number	This DINT contains the index number that is being modified.
Index Type	This DINT contains the type of the index, absolute, incremental, registration or blended incremental.
Index Move Type	This DINT contains the move type of the index Trapezoidal or S-Curve.
Index Distance	This REAL contains the move distance of the index.
Index Batch Count	This DINT contains the number of times the index should execute before moving to the next index.
Index Dwell	This DINT contains the number of milliseconds the axis should remain at position before moving to the next index.
Index Velocity	This REAL contains the velocity the axis should move at while moving the specified distance.
Index Maximum Acceleration	This REAL contains the maximum acceleration the axis should use in reaching the index velocity.
Index Maximum Deceleration	This REAL contains the maximum deceleration the axis should use in when approaching the target position.
Index Next Index	This DINT contains the next index the drive should begin executing after completing this index.
Index Action	This DINT contains the action the drive should take once this index is complete.
Index Registration Distance	This REAL contains the displacement from the registration position the axis should move to if a registration index is used.

Table 54 - Index Configuration Assembly Instance

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
03	Index Number (DIN	Index Number (DINT)						
47	Index Type (DINT)							
811	Index Move Type (DINT)							
1215	Index Distance (REAL)							
1619	Index Batch Count (DINT)							
2023	Index Dwell (DINT)							
2427	Index Velocity (REA	L)						
2831	Index Maximum Ac	celeration (REAL)						
3235	Index Maximum De	celeration (REAL)						
3639	Index Next Index (D	NNT)						
4043	Index Action (DINT)	1						
4447	Index Registration I	Distance (REAL)						

In this Index Configuration Assembly example, the parameter Index Number with a range of 0...3 bytes is expanded to show the low byte, low middle byte, high middle byte, and high byte. These values are typical for each parameter in Table 54.

Table 55 - Index Configuration Assembly Example

Byte	Parameter Value
0	Index Number - Low byte
1	Index Number - Low middle byte
2	Index Number - High middle byte
3	Index Number - High byte

Table 56 - ID Tag Numbers for Indexes 00...15

Parameter Name	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
Index Type	272	283	294	305	316	327	338	349	360	371	382	293	404	415	426	437
Move	273	284	295	306	317	328	339	350	361	372	383	294	405	416	427	438
Distance	274	285	296	307	318	329	340	351	362	373	384	295	406	417	428	439
Register Distance	275	286	297	308	319	330	341	352	363	374	385	296	407	418	429	440
Batch Count	276	287	298	309	320	331	342	353	364	375	386	297	408	419	430	441
Dwell	277	288	299	310	321	332	343	354	365	376	387	298	409	420	431	442
Velocity	278	289	300	311	322	333	344	355	366	377	388	299	410	421	432	443
Accel	279	290	301	312	323	334	345	356	367	378	389	400	411	422	433	444
Decel	280	291	302	313	324	335	346	357	368	379	390	401	412	423	434	445
Next Index	281	292	303	314	325	336	347	358	369	380	391	402	413	424	435	446
Action	282	293	304	315	326	337	348	359	370	381	392	403	414	425	436	447

Parameter Name	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Index Type	448	459	470	481	492	503	514	525	536	547	558	569	580	591	602	613
Move	449	460	471	482	493	504	515	526	537	548	559	570	581	592	603	614
Distance	450	461	472	483	494	505	516	527	538	549	560	571	582	593	604	615
Register Distance	451	462	473	484	495	506	517	528	539	550	561	572	583	594	605	616
Batch Count	452	463	474	485	496	507	518	529	540	551	562	573	584	595	606	617
Dwell	453	464	475	486	497	508	519	530	541	552	563	574	585	596	607	618
Velocity	454	465	476	487	498	509	520	531	542	553	564	575	586	597	608	619
Accel	455	466	477	488	499	510	521	532	543	554	565	576	587	598	609	620
Decel	456	467	478	489	500	511	522	533	544	555	566	577	588	599	610	621
Next Index	457	468	479	490	501	512	523	534	545	556	567	578	589	600	611	622
Action	458	469	480	491	502	513	524	535	546	557	568	579	590	601	612	623

Table 57 - ID Tag Numbers for Indexes 16...31

Homing Category

The Kinetix 300 drives have a predefined (firmware based) homing functionality. The supported homing methods include limit switches at the ends of travel, a dedicated home switch, an index pulse or zero reference from the motor feedback device, or a combination of the above.

Allen-Bradley	Kinetix 300)		Englis	Automatio	
Connect	Disconnect	Save Connection	Load Connection	Print	Stop/Reset	
Save Configuration	Load Configuration	Restore Defaults	Upgrade			
[192.168.124.200] : Motor	Description	Va	lue	Units	Min	
General Communication Ethernet	Home Accel / Decel	10.0000		User Units / Sec ² 0.0000 User Units -2147483648 User Units / Sec 0.0000		
EtherNet/IP (CIP)	Home Uniset Home Velocity Fast	1.0000				
Analog IO	Home Velocity Slow Home Switch	1.0000 Input B1		User Units / Sec	0.0000	
Velocity Limits Position Limits Dynamics	Homing Status	Not Homed				
Indexing	Start Homing	Abort	Homing			
Homing Tools Monitor	ID Home Meth	od Directio	on L	одіх Туре	Home Sensor Polarity	
Faults	7 Switch - Mar	ker Forwar	d Bi-	directional	Active/Rising	
		000				

The configuration for Homing requires setting the these parameters either over EtherNet/IP Explicit Messaging or through the embedded software interface.

ID	Parameter Name	Description	Value/Notes
227	Home Accel/Decel	Homing acceleration/deceleration rate	Range 010,000,000 UU per second ² .
228	Home Offset	The new position of the motor after the homing sequence is complete. All subsequent absolute moves are taken relative to this new zero position.	Range: -32767 +32767 user units.
230	Home Velocity Fast	For homing methods that use one velocity setting, this tag is used as the velocity.	Range: -10,000+10,000 UU/sec.
231	Home Velocity Slow	For homing methods that use two velocity settings (fast and slow), this tag is used as the slow velocity. Typically, this tag is used to creep to a homing position.	
232	Home Method	Defines the type of homing to be performed. See Table 59 on page 115.	N/A
234	Home Switch	The digital input that should be used as a home switch for appropriate homing method.	Do not assign to A1, A2, A3, or C3 as these inputs have predefined functions.

Table 58 - Homing Category

Homing Methods

To use homing methods involving Motor Index Pulse (zero pulse), the index pulse of the motor must be connected to the drive input. When the drive has been homed, it asserts the Homed bit in the EtherNet/IP Output Assembly.

The drive indicates whether the homing completed successfully or not. Once homing has been initiated, the Homing Active status bit in the EtherNet/IP Input Assembly is set. If the Homing Active status bit is no longer set and the Homed status bit is also not set, then an error occurred in the homing and the drive is not homed.

If the drive has not been homed or the stored absolute position information from an absolute home is no longer valid, any absolute position moves generate a fault. Incremental position moves do not generate a fault.

Absolute homing is the only method retained after power cycles. With any other homing method the Homed bit is not set following a power cycle until the homing has been repeated.

The absolute position information within the drive (if absolute homed) is cleared and the Homed bit cleared if any of these events occur:

- A change of motor encoder is detected.
- A change of motion polarity is made.
- The absolute position information within the motor nonvolatile memory does not match the absolute position information within the drive nonvolatile memory (if absolute homed).
- A feedback related fault has occurred.
- At power up drive is reporting a battery error.

If your drive is set to Indexing mode and you are not using a controller, a home switch is required to automatically home your incremental encoder at power up.

IMPORTANT All homing methods write to the drive's non-volatile memory, which is limited to 1 million write cycles. The drive should not be homed more often than this.

Hom	e Method ^{(1) (2)}	Direction	Homing Type	Home Sensor Polarity
7	Switch-Marker	Forward	Bi-directional	Active/Rising
8	Switch-Marker	Forward	Uni-directional	Active/Rising
9	Switch-Marker	Forward	Bi-directional	Active/Falling
10	Switch-Marker	Forward	Uni-directional	Active/Falling
11	Switch-Marker	Reverse	Bi-directional	Active/Rising
12	Switch-Marker	Reverse	Uni-directional	Active/Rising
13	Switch-Marker	Reverse	Bi-directional	Active/Falling
14	Switch-Marker	Reverse	Uni-directional	Active/Falling
23	Switch-Fast	Forward	Home to sensor	Active/Rising
25	Switch-Slow	Forward	Home to sensor	Active/Falling
27	Switch-Slow	Reverse	Home to sensor	Active/Falling
29	Switch-Fast	Reverse	Home to sensor	Active/Rising
33	Marker	Reverse	Home to marker	N/A
34	Marker	Forward	Home to marker	N/A
35	Immediate	N/A	N/A	N/A

Table 59 - Homing Methods Summary

All other values of [HomeMethod] are not used for the Kinetix 300 drive and attempts to use those values will result in a drive fault.
 Home-to-torque is not available.

Immediate Homing

The immediate home operation on the drive defines the current position of the motor to be the home and the position set to the [HomeOffset] parameter. The drive must be in Indexing mode or EtherNet/IP Positioning mode and the drive must be enabled.

Absolute Homing

The absolute homing on the drive behaves similarly to the Immediate Homing operation. The homing does not induce shaft motion on the motor. The current position of the motor is the home position and the position is set to the [HomeOffset] parameter.

The difference between the absolute position in the encoder and the [HomeOffset] parameter is stored in nonvolatile memory so that all absolute motion is relative to the current position. After a power cycle the drive continues to operate as though it was homed.

For absolute homing on motors with absolute encoders, execute an Immediate Home.

Home to Marker

On incremental encoders, the marker pulse generated by the encoder is used by the drive as the marker for active homing.

On absolute encoders without a marker pulse, the drive synthesizes (internal to the drive firmware only) a marker pulse that is a consistent position once per mechanical rotation of the motor. This generated marker pulse is used by the drive as the marker for active homing of an absolute encoder.

Home Offset

The home offset parameter is the difference between the zero-position for the application and the machine home-position (found during homing). Once homing is completed, the zero-position is offset from the home-position by adding the home offset to the home position. All subsequent absolute moves are taken relative to this new zero position.

Homing Switch

The homing switch tag enables you to select the drive input used for the Home Switch connection. The Homing Switch Input Assignment range is 0...11. Inputs A1...A4 are assigned 0...3 respectively; inputs B1...B4 are assigned 4...7 respectively; and inputs C1...C4 are assigned 8...11 respectively. Do not assign to A1, A2, A3, or C3 as these inputs have predefined functions.

Homing Firmware Algorithm

Figure 65 - Homing Algorithm Flowchart

Homing Methods Timing Diagrams

For a summary of the homing methods, see Table 59 on page 115.

Homing Methods 7...14

Homing methods 7...14 use a home switch that is active over only a portion of the travel. In effect, the switch has a momentary action as the axis position sweeps past the switch. Using methods 7...10, the initial direction of movement is forward and by using methods 11...14, the initial direction of movement is reverse, except if the home switch is active at the start of motion. In this case, the initial direction of motion is dependent on the edge being sought. The home position is at the index pulse on either side of the rising or falling edges of the home switch, as shown in the following two diagrams. If the initial direction of movement leads away from the home switch, the drive must reverse on encountering the relevant limit switch. All of these methods use the fast acceleration parameter.

Homing Method 23

Using this method, the initial direction of movement is forward (if the homing switch is inactive). The home position is the leading edge of the homing switch.

The axis accelerates to fast-homing velocity in the forward direction and motion continues until the homing switch is activated (rising edge) shown at position A. The axis decelerates to zero velocity.

If the homing switch is already active when the homing routine commences, then this initial move is not executed.

The axis accelerates to fast-homing velocity in the reverse direction and motion continues until the falling-edge of the homing switch is detected, (position B), where the axis decelerates to 0 velocity. The axis accelerates to slow-homing velocity in the forward direction and motion continues until the rising-edge of the homing switch is detected (position C), where the axis decelerates to 0 velocity. The axis accelerates to a slow-homing velocity in the reverse direction and motion continues until the falling-edge of the homing switch is detected (position C), where the axis decelerates to 0 velocity. The axis accelerates to slow-homing velocity in the reverse direction and motion continues until the falling-edge of the homing switch is detected (position 23). This is the home position (excluding offset).

TIPIf the axis is on the wrong side of the homing switch when homing is started,
the axis moves forward until it contacts the positive limit switch. Upon
activating the positive limit switch the axis changes direction (reverse),
following the procedure detailed above, but ignoring the initial move in the
forward direction.

Figure 68 - Homing Method 23

Homing Method 25

Using this method, the initial direction of movement is forward. The home position is the falling-edge of the homing switch.

The axis accelerates to fast-homing velocity in the forward direction and motion continues until the homing switch is deactivated (falling edge) shown at position A. The axis decelerates to zero velocity.

The axis accelerates to slow-homing velocity in the leftward direction. Motion continues until the rising-edge of the homing switch is detected (position B), where the axis decelerates to 0 velocity. The axis accelerates to slow-homing velocity in the rightward direction. Motion continues until the falling-edge of the homing switch is detected (position 25). This is the home position (excluding offset).

TIP

If the axis is on the wrong side of the homing switch when homing is started, the axis moves forward until it contacts the positive limit switch (A2). Upon activating the positive limit switch the axis will change direction (reverse) continuing motion until it sees the rising edge of the homing switch. The axis stops and follows the procedure as detailed above.

Figure 69 - Homing Method 25

Homing Method 27

Using this method, the initial direction of movement is reverse. The home position is the falling-edge of the homing switch.

The axis accelerates to fast-homing velocity in the reverse direction and motion continues until homing switch is deactivated (falling edge) shown at position A. The axis decelerates to zero velocity.

The axis accelerates to slow-homing velocity in the forward direction. Motion continues until the rising-edge of the homing switch is detected (position B), where the axis decelerates to 0 velocity.

The axis accelerates to slow-homing velocity in the reverse direction. Motion continues until the falling-edge of the homing switch is detected (position 27). This is the home position (excluding offset).

TIPIf the axis is on the wrong side of the homing switch when homing is started,
then the axis moves reverse until it contacts the negative limit switch (A1).
Upon activating the negative limit switch the axis changes direction (forward)
continuing motion until it sees the rising-edge of the homing switch. The axis
stops and follows the procedure as detailed above.

Using this method, the initial direction of movement is reverse (if the homing switch is inactive). The home position is the leading-edge of the homing switch.

The axis accelerates to fast-homing velocity in the leftward direction and continues until the homing switch is activated (rising edge) shown at position A. The axis decelerates to zero velocity. If the homing switch is already active when the homing routine commences, then this initial move is not executed.

The axis accelerates to fast-homing velocity in the forward direction. Motion continues until the falling-edge of the homing switch is detected (position B), where the axis decelerates to 0 velocity.

The axis accelerates to slow-homing velocity in the reverse direction. Motion continues until the rising-edge of the homing switch is detected (position C), where the axis decelerates to 0 velocity.

The axis accelerates to slow-homing velocity in the rightward direction. Motion continues until the falling-edge of the homing switch is detected (position 29). This is the home position (excluding offset).

TIP If the axis is on the wrong side of the homing switch when homing is started, the axis moves reverse until it contacts the negative limit switch (A1). Upon activating the negative limit switch the axis will change direction (forward) following the procedure as detailed above, but ignoring the initial move in the reverse direction.

Homing Method 33

Using this method, the initial direction of movement is reverse. The home position is the first index pulse past the shaft starting position. The axis accelerates to fast-homing velocity in the reverse direction and continues until the rising-edge of the first index pulse (position 33) is detected.

Figure 72 - Homing Method 33

Homing Method 34

Using this method, the initial direction of movement is forward. The home position is the first index pulse past the shaft starting position. The axis accelerates to fast-homing velocity in the forward direction and continues until the rising-edge of the first index pulse (position 34) is detected.

Figure 73 - Homing Method 34

Homing Method 35

Using this method, the current position is assumed to be the home position. There is no motion of the motor shaft during this procedure. Any offset specified is added to the stored home position.

Upgrade Firmware

Follow these steps to upgrade the firmware in your Kinetix 300 drive.

- Obtain the latest firmware from <u>http://www.rockwellautomation.com/</u> <u>compatibility/</u>.
- 2. Run the MotionView software.
- 3. Click Upgrade.

This dialog box appears.

4. Comply with dialog box requests and click yes.

This dialog box appears.

- 5. Enter the IP address of the Kinetix 300 drive you intend to upgrade.
- 6. Navigate to the .lar file that you downloaded in step 1.
- 7. Click Upgrade Firmware.

Do not turn off power to the computer or the drive.

8. When the upgrade is finished, restart the drive.

Access the upgraded MotionView software by entering the drives IP address in a web browser.

Configure and Start Up the Kinetix 300 Drive

Торіс	Page
Keypad Input	126
Configure the Kinetix 300 Drive Ethernet IP Address	128
Configuring the Logix EtherNet/IP Module	132
Apply Power to the Kinetix 300 Drive	138
Test and Tune the Axis	139
Select Drive Operating Mode	142
Master Gearing Mode Examples	143
Configure the Drive Parameters and System Variables	145
Configure Drive Mode with Explicit Messaging	148
Configure Drive for Linear Motors and Direct Drive Stages	150

Keypad Input

The Kinetix 300 drive is equipped with a diagnostic status indicator and three push buttons that are used to select displayed information and to edit a limited

set of parameter values. You can scroll the parameters by using **OO**. To view a value, press **O**. To return to Scroll mode press **O** again.

When you press 🕘 on editable parameters, the yellow status indicator (C) blinks indicating that the parameter value can be changed. Use 🔊 to change the value. Press 🔁 to store the new setting and return to Scroll mode.

Table 60 - Status Display Information

Status Indicator	Description
StAt	Current drive status - run = drive running, diS = drive disabled, EXX = Drive fault, where XX is the fault code.
Hx.xx	Hardware revision. For example, H2.00.
Fx.xx	Firmware revision. For example, F2.06.
FLtS	Stored fault's history. You can scroll through stored faults EOXXE7XX, where XX is the fault code.
Ht	Heatsink temperature. Heatsink temperature in is shown °C if greater than 40 °C. Otherwise 'LO (low) is displayed.
EnC	Encoder activity. Primary encoder counts are displayed for encoder diagnostics.
buS	Displays drive DC bus voltage.
Curr	Displays motor's phase current (RMS). Shows current value if drive is enabled, otherwise shows DiS.
boot	0 = autostart disabled, $1 =$ autostart enabled.
dHCP	Ethernet DHCP Configuration: 0=dHCP is disabled; 1=dHCP is enabled.
IP_1	First octet of the IP address.
IP_2	Second octet of the IP address.
IP_3	Third octet of the IP address.
IP_4	Fourth octet of the IP address (changeable).

Status Indicators

The Kinetix 300 drive has five status indicators located around the periphery of the front panel display as shown below. These status indicators used to monitor the system status, activity, and troubleshoot faults.

Figure 74 - Front Panel Display

Figure 75 - Status Indicators

Status Indicator	Function	Description
A	Enable	Orange status indicator means that the drive is enabled (running).
В	Regen	Yellow status indicator means the drive is in Regeneration mode.
C	Data entry	Yellow status indicator flashes when changing.
D	Drive fault	Red status indicator illuminates upon a drive fault.
E	Comm activity	Green status indicator flashes to indicate communication activity.

Configure the Kinetix 300 Drive Ethernet IP Address

This section offers guidance on configuring your Ethernet connection to the Kinetix 300 drive.

TIP To run MotionView OnBoard on a Mac OS, run the personal computer emulation tool first.

Ethernet Connection

Configuration, programming, and diagnostics of the Kinetix 300 drive are performed over the standard 10/100 Mbps Ethernet communication port by using the MotionView OnBoard software contained within the drive itself.

To access the MotionView OnBoard software, the Kinetix 300 drive and your personal computer must be configured to operate on the same Ethernet network. The IP addresses of the Kinetix 300 drive, the personal computer, or both drive and personal computer may require configuring to enable Ethernet communication between the two devices.

IMPORTANT	Any changes made to Ethernet communication settings on the Kinetix 300 drive do not take effect until the drive is powered off and powered on again. The drive continues to use the previous settings until power is cycled.
TIP	For personal computers with an Ethernet port that is used for a specific purpose, such as email or web browsing, it may be more convenient for you to add an Ethernet port to the personal computer.
	Installing a USB/Ethernet dongle or a PCMCIA Ethernet card is an easy way to gain an additional port for communication to the Kinetix 300 drive.

Kinetix 300 Drive Ethernet Port Configuration

The IP address of the Kinetix 300 drive is composed of four sub-octets that are separated by three dots to conform to the Class C Subnet structure. Valid configurations for sub-octets are between 001...254. The default IP address for any Kinetix 300 drive is 192.168.124.200.

There are two methods of changing the current IP address. An address can be assigned to the drive automatically (dynamic IP address) when the drive is connected to a DHCP (Dynamic Host Configuration Protocol) enabled server, or the drive can have an IP address assigned to it manually be the user (static IP address). Both methods of configuring the drives IP address are shown here.

Current IP Address Ethernet Setting

The current Ethernet setting and IP address of the Kinetix 300 drive can be

obtained from the drive display and keypad. Press 🕘 on the display and use

to access parameters IP_1, IP_2, IP_3 and IP_4. Each of these parameters contain one sub-octet of the full IP address, for example in the case of the drive default (factory set) address parameters:

 $IP_1 = 192$ $IP_2 = 168$ $IP_3 = 124$ $IP_4 = 200$

By accessing these four parameters the full IP address on the drive can be obtained.

If parameters IP_1, IP_2, IP_3 and IP_4 all contain '----' rather than a numerical values it means that the drive has DHCP enabled and the DHCP server is yet to assign the drive its dynamic IP address. As soon as an IP address is assigned by the server the address assigned is displayed by the drive in the above parameters. See Configure the IP Address Automatically (dynamic address) on <u>page 131</u>.

Configure the IP Address Manually (static address)

When connecting directly from the Kinetix 300 drive to the personal computer without a server or when connecting to a private network, where all devices have static IP addresses, assign the IP address of the Kinetix 300 manually.

To assign the address manually, disable the DHCP mode. Do this by using the drive keypad and following these steps.

- 1. Press 🔁 .
- 2. Use **O** to access parameter DHCP.
- 3. Verify DHCP parameter is set to a value of 0.

If the DHCP parameter is set to 1, use \bigcirc and \bigcirc to change the value to 0.

4. Cycle power to the drive.

The change takes effect.

When DHCP is disabled and power cycled to the drive, it reverts to the previous static IP address.

If you are connecting more than one drive to the personal computer, create a unique IP address for each drive. Do this by using the keypad on each drive to change the IP_4 parameter. IP_4 is the only octet that can be changed via the

keypad. IP_1, IP2, and IP_3 are read-only accessed this way. The drive power must be cycled for any changes to take effect.

To configure the Kinetix 300 drive for a specific subnet or change its full IP address, use the MotionView configuration tool.

- 1. Run a Java enabled web browser.
- 2. Enter the drive's current IP address into the browser.

MotionView OnBoard dialog box opens.

- 3. Click Run.
- 4. Click Connect.
- 5. Enter the drive's IP address.
- 6. Click Connect.
- 7. From the Drive Organizer, select Communications>Ethernet.

The IP address, subnet mask, and default gateway address can be edited in this screen. If the text turns red when entered, the values or format used are invalid and they are not applied.

				Automatic
Connect	Disconnect	Save Connection	Load Connection	Stop/Reset
Print	Save Configuration	Load Configuration	Restore Defaults	
Upgrade				
Communication Ethernet EtherNet/IP (C Digital IO Analog IO Limits Velocity Limits	(XP)	ess using DHCP 192.168.1 255.255.2 192.168.1	24.200 55.0 24.1	

- 8. Click Obtain IP Address using DHCP, to enable DHCP.
- 9. To disable DHCP, click DHCP again.
- **10.** Cycle power to make changes to take effect.

The first time you change an Ethernet parameter, the following dialog box opens. Click OK and cycle power for changes to take effect.

	on turne message		
7	You must REBOOT the of reconnect. Proper operation of Mot reboot the drive	drive for changes to take ionView is not guarantee	effect and d if you don't:

Configure the IP Address Automatically (dynamic address)

When connecting a Kinetix 300 drive to a network domain with a DHCP enabled server the IP address of the Kinetix 300 drive is assigned automatically. To have the address assigned automatically the drive must have its DHCP mode enabled. Follow these steps by using the drive keypad and display.

- 1. Press 🔁.
- 2. Use **O** to access parameter DHCP.
- 3. Check this parameter is set to 1.
- 4. If the DHCP parameter is set to 0, use and to change the parameter setting to 1.
- 5. Cycle power to the drive to make this change take effect.

When the Kinetix 300 drive is waiting for an IP address to be assigned to it by the server it displays '----' in each of the four octet parameters (IP_1, IP_2, IP_3, and IP_4) on its display. Once the address is assigned by the server it appears in these parameters. If this parameter continues to display '----' then it is likely that a connection between the drive and server has not been established, or the server is not DHCP enabled.

DHCP can be enabled through the MotionView software. If you choose to configure the drive by using a manual (static) IP address, you can switch over to an automatic (dynamic) address once configuration is complete. See <u>Current IP</u> <u>Address Ethernet Setting</u> on <u>page 129</u> for information on enabling DHCP from within the MotionView software.

TIPA useful feature of the MotionView software and communication interface to
the Kinetix 300 drive is the ability to assign the drive a name (text string).
This name can then be used to discover the drives IP address and is useful
when the drive has its IP address assigned automatically by the server for
easy connection.

Add-on Profiles

To select Kinetix 300 drives in RSLogix 5000 software, version 17, you must load Add-on Profiles from <u>www.ab.com</u>.

To navigate to the Add-on Profiles, follow this path:

- Technical Support
- Software Updates, Firmware and Other Downloads
- RSLogix 5000 I/O Modules Add-On-Profiles

You will be required to establish a login and provide the serial number of your drive to access the download file.

This procedure assumes that you have wired your Kinetix 300 drive.

IMPORTANTFor the Kinetix 300 drive to communicate with the Ethernet network
module, your RSLogix 5000 software must be version 17 or later.

For help using RSLogix 5000 software as it applies to configuring the ControlLogix, CompactLogix, or SoftLogix[™] EtherNet/IP modules, See Additional Resources on page 12.

Configure the Logix Controller

Follow these steps to configure the Logix controller.

- 1. Apply power to your Logix chassis containing the Ethernet interface module/PCI card and open your RSLogix 5000 software.
- 2. From the File menu, choose New.

Configuring the Logix EtherNet/IP Module

lew Controll	er	
Vendor:	Allen-Bradley	
Туре:	1769-L23E-QB1 CompactLogix5323E-QB1 Controller 😪	ОК
Revision:	18 💌	Cancel
	Redundancy Enabled	Help
Name:	UM	
Description:		
Chassis Type:	(none)	
Slot	Safety Partner Slot: <none></none>	
Create In:	C:\RSLogix 5000\Projects	Browse

The New Controller dialog box opens.

- 3. Configure the new controller.
 - a. From the Type pull-down menu, choose your controller type. In this example, the CompactLogix L23E-QB1 controller is chosen.
 - b. Enter your RSLogix 5000 software version.
 - c. From the Chassis Type pull-down menu, choose your chassis. This step applies only for ControlLogix controllers.
 - d. Enter the slot where your module resides (leftmost slot = 0). This step applies only for ControlLogix controllers.
 - e. Name the file.
- 4. Click OK.
- 5. From the Edit menu, choose Controller Properties.

The Controller Properties dialog box opens.

General	Serial Port	System Protocol		User Protocol		Major Faults	
Minor Faults	Date/Time*	Advanced	SFC	Execution	File	Memory	
1) The Date and Use these field	I Time displayed he Ids to configure Tim	re is Controller local e attributes of the C	l time, not Controller.	workstation l	ocal time.		
	Set Date, Time an	nd Zone from Work:	station				
Date and Time:				Change Da	te and Time	+	
lime Zone:			~ •				
	Adjust for Daylig	jht Saving (+00:00)	*				
ime Synchron	ize						
🗹 Enable Time S	ynchronization	A DA dis	ANGER. I abled onl ntroller in	f time synchro ine, active ax this chassis, c	nization is es in any or any other		
	time master	syi	nchronize	d device, may	experience		
🔾 Is the system t	 Is a synchronized time slave 			unexpected motion. Safety controllers may fault if no other time master exists in the			
) is the system t) is a synchroni:	zed time slave	iau	are in the ou				
) Is the system t) Is a synchroni:) Duplicate CST 	zed time slave ` master detected	loc	al chassi	s.		-	
) Is the system t) Is a synchroni:) Duplicate CST) CST Mastersh 	zed time slave 7 master detected ip disabled	loc	al chassi	s.	Advanced	3	

- 6. Click the Date and Time tab.
- 7. Check the box Make this controller the Coordinated System Time master.

IMPORTANTYou can assign only one ControlLogix controller as the Coordinated
System Time master.

8. Click OK.

Configure the Ethernet Port

This section applies when the CompactLogix controller, catalog number 1769-L23E-QB1, is used.

Follow these steps to configure the Ethernet port.

1. Right-click the embedded 1769-L23E-QB1 Ethernet port and choose Properties.

The Module Properties dialog box opens.

General* Con	nnection RSNetWorx Module Info Port Configuration Port Diagnostics	
Type: Vendor: Parent:	1769-L23E-QB1 Ethemet Port 10/100 Mbps Ethemet Port on CompactLogix5323E-0 Allen-Bradley Controller	QB1
Name: Description:	LocalENB IP Address: 192 . 168 . 124 O Host Name:	. 2
Slot:	Major Revision: 18	

2. Enter the IP address of the Ethernet port.

In this example, the IP address is 192.168.124.2. This is the controller Ethernet address, not the drive Ethernet address.

3. Click OK.

Configure the Ethernet Module

This section applies when the ControlLogix controller, catalog number 1756-ENET/B, is used.

Follow these steps to configure the Ethernet module.

1. Right-click I/O Configuration in the Controller Organizer and choose New Module.

The Select Module dialog box opens.

dule	Description	Vendor
Analog Communications		<u>^</u>
1756-ENBT 1756-ENET/A	1756 10/100 Mbps Ethernet Bridge, Twisted-Pair I 1756 Ethernet Communication Interface	Media Allen-Bradley Allen-Bradley
1756-ENET/B	1756 Ethernet Communication Interface	Allen-Bradley
1756-EWEB/A 1756-SYNCH/A	1756 10/100 Mbps Ethernet Bridge w/Enhanced V SynchLink Interface	Veb Serv., Allen-Bradley Allen-Bradley 🗸 🗸
<		
		Find Add Favorite
By Category	By Vendor Favorites	

2. Expand the Communications category and select 1756-Exx/x appropriate for your actual hardware configuration.

In this example, the 1756-ENET/B module is chosen.

3. Click OK.

The New Module dialog box opens.

Vendor: Parent:	Allen-Bradley		
Name:	UM	Address / Host N	ame
Description:			192 . 168 . 124 . 2
Slot	1		
Revision:	2 1 🗘	Electronic Keying:	Compatible Keying 🗸

- 4. Configure the new module.
 - a. Name the module.
 - b. Enter the IP address of the Ethernet module.

In this example, the IP address is 192.168.124.2. This is the controller Ethernet address, not the drive Ethernet address.

- c. Enter the slot where your module resides (leftmost slot = 0).
- 5. Click OK.

Configure the Kinetix 300 Drive

Follow these steps to configure the Kinetix 300 drive.

1. Right-click the embedded 1769-L23E Ethernet port and choose New Module.

The Select Module dialog box opens.

Module		Description	Vendor
	2097-V31PR0	Kinetix 300, 2A, 120/240V, No Filter	Allen-Bradley 🖌
	2097-V31PR2	Kinetix 300, 4A, 120/240V, No Filter	Allen-Bradley
	2097-V32PR0	Kinetix 300, 2A, 240V, Integrated Filter	Allen-Bradley
	2097-V32PR2	Kinetix 300, 4A, 240V, Integrated Filter	Allen-Bradley
	2097-V32PR4	Kinetix 300, 8A, 240V, Integrated Filter	Allen-Bradley
	2097-V32PR5	Kinetix 300, 10A, 240V, Integrated Filter	Allen-Bradley
	2097-V33PR1	Kinetix 300, 2A, 240V, No Filter	Allen-Bradley
	2097-V33PR3	Kinetix 300, 4A, 240V, No Filter	Allen-Bradley
	2097-V33PR5	Kinetix 300, 8A, 240V, No Filter	Allen-Bradley
	2097-V33PR6	Kinetix 300, 12A, 240V, No Filter	Allen-Bradley
	2097-V34PR3	Kinetix 300, 2A, 480V, No Filter	Allen-Bradley
	2097-V34PR5	Kinetix 300, 4A, 480V, No Filter	Allen-Bradley
	2097-V34PR6	Kinetix 300, 6A, 480V, No Filter	Allen-Bradley
<			>
		Find	Add Favorite
By Ca	itegory By	Vendor Favorites	

2. Expand the Drives category and select your Bulletin 2097 drive as appropriate for your actual hardware configuration.

In this example, the 2097-V33PR3 drive is selected.

3. Click OK.

aeneral* Conr	nection Modu	ule Info			
Type:	2097-V33PF	33 Kinetix 30	0, 4A, 240V, No Filter		
Vendor:	Allen-Bradle	Ų			
Parent:	LocalENB			Ethernet Address	
Name:	UM_K300			IP Address:	192 . 168 . 124 . 200
Description:				O Host Name:	
Module Defi	nition				
Series:		A	Change		
Revision:		1.1			
Electronic K	eying:	Compatib	le Module		
Connection:		Data			

The New Module dialog box opens.

- 4. Configure the new module.
 - a. Name the module.
 - b. Set the drive Ethernet address.

Set the Ethernet address in the software to match the Ethernet address scrolling on the drive. See <u>Current IP Address Ethernet Setting</u> on page 129.

5. Click the Connection tab.

General Connection [*] Module Info Requested Packet Interval (RPI): 20.0 C ms (2.0 - 100.	1	
Requested Packet Interval (RPI): 20.0 📚 ms (2.0 - 100.	1	
🗌 Inhibit Module		
Animited Module		
Module Fault		
Challen Office		

6. Configure the Requested Packet Interval (RPI) for your application.

The default setting is 20 ms. Yours could be different.

7. Click Ok.

Download the Program

After completing the Logix configuration you must download your program to the Logix processor.

Apply Power to the Kinetix 300 Drive

This procedure assumes that you have wired and configured your Kinetix 300 drive system and your Ethernet/IP interface module.

To avoid hazard of electrical shock, perform all mounting and wiring of the Bulletin 2097 drive before applying power. Once power is applied, connector terminals may have voltage present even when not in use.

Follow these steps to apply power to the Kinetix 300 drive system.

1. Disconnect the load to the motor.

ATTENTION: To avoid personal injury or damage to equipment, disconnect the load to the motor. Make sure each motor is free of all linkages when initially applying power to the system.

2. Determine the source of the drive logic power.

If Your Logic Power	Then
Is from (24V DC) back-up power	Apply (24V DC) back-up power to the drive (BP connector).
Is from Mains input power	Apply mains input power to the drive (IPD connector).

- 3. Apply mains input power to the Kinetix 300 drive IPD connector.
- 4. Observe the four character status indicator.

If the status indicator is	Then
diS	Go to <u>step 5</u>
Blank	Go back to main <u>step 2</u>

5. Determine the source of logic power.

If Your Logic Power	Then
Is from (24V DC) back-up power	Apply mains input power to the drive (IPD connector)
Mains input power	Go to <u>step 6</u>

- 6. Verify that Hardware Enable Input signal IOD connector pin 29 is at 0V.
- 7. Observe the status indicator on the front of the Kinetix 300 drive.

Status Indicator	Condition	Status	Do This
Drive Fault	Off	Normal condition	Observe the Comm Activity, status indicator E.
	Steady red	Drive is faulted	Go to <u>Status Indicators</u> on <u>page 127.</u>
Comm Activity	Flashing	Communication is ready	Go to Test and Tune the Axis on page 139.
	Off	No communication	Go to <u>Status Indicators</u> on <u>page 127.</u>

Test and Tune the Axis

This procedure assumes that you have configured your Kinetix 300 drive, your Logix Ethernet module, and applied power to the system.

Test the Axis

This procedure applies only to motors with incremental encoders. When using motors with absolute encoders skip to <u>Tune the Axis</u>. Follow these steps to test the axis.

- 1. Verify the load was removed from each axis.
- 2. Run the MotionView OnBoard software.
- 3. Select the Motor category.
- **4.** Click Check Phasing.

Allen-Bradley	Kineti	300				
Connect	Disconnect	Save	Connection	Load Connection	Pri	int
GoPack [10.91.84.224]:		_	~		
Motor	1	Change I	Motor	Check Phasing		
Communication				مرد المالي		
Ethernet						
IO		Currently sel	ected Motor:	Synchronous I	Motor	
Digital IO						
Analog IO		Vendor:	BA Motor		Motor Model :	MPL-B
Velocity Limits		Electrica	1		The second se	Feed
Position Limite		CHENRY SECONDERVI		A CONTRACTOR		

5. Apply Enable Input signal (IOD-29) for the axis you are testing.

ATTENTION: To avoid personal injury or damage to equipment, apply Enable Input (IOD-29) only to the axis you are testing.

- 6. Click Start Autophasing.
- 7. Determine if your test completed successfully.

lf	Then
Your test completed successfully and dialog box opens that states motor is phased correctly.	 Click Ok. Remove Enable Input signal. Go to <u>Tune the Axis</u> on <u>page 140</u>.
Your test did not complete successfully.	 Click Ok. Verify that the Enable Input signal is applied to the axis you are testing. Verify the motor feedback is wired as required. Return to main <u>step 6</u> and run the test again.

Tune the Axis

Follow these steps to tune the axes.

1. Verify the load is removed from the axis you want to tune.

ATTENTION: To reduce the possibility of unpredictable motor response tune your motor with the load removed first, then re-attach the load and preform the tuning procedure again to provide an accurate operational response.

- 2. Run the MotionView OnBoard software.
- 3. Select General.
- 4. From the Drive Mode pull-down menu, choose Auto Tune.
- 5. Select Dynamics.

The current velocity and position gains, position limit, and scaling are displayed.

- **6.** If you are using an linear incremental encoder with a resolution greater than one micron, do the following. Otherwise continue with the next step.
 - a. Set FeedBack Filter to Yes.
 - b. Set the time constant to 1 ms.
 - TIPTo reduce the audible noise when a LDAT-Series linear thruster with an
absolute encoder option is under servo control, we recommend that you use a
low-pass filter with the cut-off frequency set to 150 Hz. You can set up the
filter in the Dynamics category.
- 7. Click Autotuning.

The Autotuning dialog box opens.

Autotuning 1	92.168.1.82	
1. Enable swit	tch should be e	nabled.
2. During auto	tuning motor (can operate resulting in mechanical part
to move or r	rotate. Do not to	ouch it.
3. Select input	t parameters fo	ir auto tuning.
4. Hit "Start Au	ito tuning" butto	on when ready.
5. Verify return	n parameters in	i dialog box, before accepting it
6. Accept or d	ecline new par	ameters.
Travel Limit	60.0	[User Units]
Position Tu	uning	
🔽 Velocity Tu	ining	
	Start	Abort

- 8. Check desired Tuning boxes (Velocity/Position or both).
- 9. Enter the Travel Limit.

This is the maximum distance in User Units that the motor shaft or actuator can safely travel during the tuning procedure

- 10. Apply Enable Input signal for the axis you are tuning.
- 11. To enable the axis, set the DriveEn bit in RSLogix 5000 software for the axis being tuned.
- 12. Click Start.

The Tune gains dialog box opens.

- 13. Click Yes.
- 14. Determine if your test completed successfully.

lf	Then
Your test completed successfully, this dialog box opens.	 Click Yes. Remove Enable Input signal. Go to <u>step 16.</u>
Important mediage Velocity P-Gain : 0069.482 Velocity F-Gain : 2840.3726 Gain Scaling : -3 Position P-Gain : 9568.064 Position I-Gain : 200.0 Yes Yes No	 Click Ok. Verify that the Enable Input signal is applied to the axis you are testing.
Important Message X Motion attempt while drive disabled 0k	 Verify the motor feedback is wired as required. Verify the safe torque-off is wired correctly. Return to main <u>step 6</u> and run the test again.

- 15. Check that the Position Error is in the range of 25...40 mm for safest operation
- 16. Select General.
- 17. From the Drive Mode pull-down menu, choose the mode you desire.
 - TIP
- If motion performance is not what you expected after tuning the drive, several filters are available to improve performance. These filters are configured from the Dynamics view of the MotionView software and their placement within the servo loops are shown in the figure on page 98.

Select Drive Operating Mode

This procedure assumes that you have configured your Kinetix 300 drive, your Logix Ethernet module, and applied power to the drive.

The drive operating mode determines the command source for the drive. You can configure the drive from MotionView software or by Explicit Messaging, instance 266, to the drive object.

Follow these steps to select the drive operating mode by using MotionView software.

- 1. Verify the load was removed from each axis.
- 2. Run the MotionView software.
- 3. From the Drive Organizer, select General.
- 4. From the Drive Mode pull-down menu, choose your drive mode.

🧏 MotionView OnBoard 🔅	3.19 -::- [10.82.50.20]			
Allen-Bradley	Kinetix 3	00		
Connect	Disconnect	Save Connection	Load Connection	
Save Configuration	Load Configuration	Restore Defaults	Upgrade	
 [10.82.50.20] Motor General Communication Ethernet 	Desc Drive Mode	Analog	Value Velocity Input	>
● EtherNet/IP (CI ● IO ● Digital IO ■ Analog IO	Current Limit 8 KHZ Peak Current Lin	12.00 nit 15.00	00	
 Limits Velocity Limits 	Velocity Mode Accel	eration		

Table 61 - Available Drive Modes

Mode	Drive Object Value
Auto Tune	0
EtherNet/IP External Reference	1
Master Gearing	2
Step and Direction	3
Analog Velocity Input	4
Analog Current Input	5
Indexing	6

Master Gearing Mode Examples

When using a Bulletin MPL encoder for master gearing, the Kinetix 300 planner treats the 128 and 1024 pulse encoders as having 262,144 interpolated counts per revolution for the purpose of calculating the gearing ratios.

User units in the MotionView software, General category, is not used in Master Gearing mode, therefore any transmission ratio besides 1:1 needs to be configured in the master-to-system units.

Master Gearing Example 1

A Bulletin MPL multi-turn motor is connected to the slave drive and outputs 128 pulses per revolution (ppr). A master encoder outputs 128 ppr TTL to the master gearing inputs on the Kinetix 300 slave drive. A 1:1 master encoder to motor revolution is required.

The drive interpolated counts are 262,144 counts/rev and the master encoder is 128 x 4 (512) counts/rev. The [Master] parameter is 1 and the [System] parameter is 262,144/512 or 512.

Master Gearing Example 2

A Bulletin MPL multi-turn motor is connected to the slave drive and outputs 1024 ppr. A master encoder outputs 2048 ppr TTL to the master gearing inputs on the Kinetix 300 slave drive. A 1:1 master encoder to motor revolution is required.

The drive interpolated counts are 262,144 counts/rev and the master encoder is 2048 x 4 (8192) counts/rev. The [Master] parameter is 1 and the [System] parameter is 262,144/8192 or 32.

Master Gearing Example 3

The same configuration as used in example 2 exists, however, the slave motor that generates the 1024 ppr is connected to a 5:1 gear box. Therefore, 1 revolution of the gear box requires 5 motor revolutions.

The drive interpolated counts are 262,144 counts/rev x 5 motor rev/1 output gear box revolution. The master encoder is 2048 x 4 (8192) counts/rev. The [Master] parameter is 1 and the [System] parameter is 262,144 x 5/8192 or 160.

Configure Master Gearing Mode

This procedure assumes that you have configured your Kinetix 300 drive for Master Gearing mode, configured your Logix Ethernet module, and applied power to the system. Follow these steps to configure the master gearing ratio.

- 1. Run the MotionView software.
- 2. From the Drive Organizer, click General.

IMPORTANT	The buffered output is supported only for use with incremental encoder motor feedback. SICK-Stegmann or Tamagawa high-
	resolution motor feedback must not be used on the master drive
	because they are not capable of generating buffered encoder output
	pulses. Conversely, the master gearing input supports only incremental
	encoder inputs.

3. Determine the ratio of buffered encoder output counts to the number of system motor counts.

See the examples on page 143.

4. Enter the values into the Master and System ratio fields.

Use a negative value in the Master field to reverse the relative direction of the of the drive compared to the master.

👹 MotionView OnBoard 3	.19 -::- [10.82.50.20]						
Allen-Bradley	Kinetix 300					English	• Au
Connect	Disconnect	Save Connection	Load Connection	Pr	int	Save Configuration	Stop
Load Configuration	Restore Defaults	Upgrade					
[10.82.50.20]							
' Motor General	Descrip	tion	Value		Units		Min
 Communication 	Drive Mode	4	nalog Velocity Input	•			
Ethernet	Current Limits						
Etherivetile (CIP 0) Current Limit		12 0000		٨		0 0000
Digital IO	9 KH7 Bask Current Limit		15.0000		,		0.0000
Analog IO	o KHZ Feak Gurrent Limit		15.0000		A		0.0000
Velocity Limits	Velocity Mode Acceler	ation					
Position Limits	Enable Accel / Decel Limi	ts	Enable	-			
Indexing	Accel Limit		1000 0000		BPM/S	Sec	0.1000
Homing	Decel Limit	Decel Limit			BPM/Sec		0 1000
- Tools	Decoremit		1000.0000				0.1000
Faults	Fault Reset	h	lanual Only	-			
	Motor Temporature Senso	r E	lisable	-			
	MASTER ENCODER : I	vlaster To System Ra	tio				
(Master	1					-32768
	System	1					1
	User Units	1	.0000		Revolutions /	Units	0.0000
Configure the Drive Parameters and System Variables

This section provides information for accessing and changing parameters not accessible through RSLogix 5000 software.

Tools for Viewing Parameters

Follow these steps to view parameters.

1. From MotionView software, click Tools.

2. Click Parameter>IO View.

≠ Var	iable Name	Hexadecimal		Decimal	
					Add Add >> V Clear Save Load Set on Top
Inputs A1-A4 Inputs B1-B4 Inputs C1-C4		Outputs 1-4	0000	ŕ	

# 1	Variable Name	
+ Indexing		
<u>+</u> ю		
+ Monitor		
+ Motion		
+ Identification		
+ Homing		
+ Analog 10		
+ Motor		
+ Configuration		
+ Ethernet		
+ Limits		
+ Dynamics		
EtherNet/IP (CIP)		

3. Click Add to add a parameter to the viewer.

4. Select a parameter from within the tree structure.

🛃 Dia	gnostic 19	2.168.124.200							
# 267	Varia AutoStartInd	ible Name	He	xadecimal		<u>0.0000</u>	Decimal	A Add >> V Clear Save Load	
inpu inpu inpu	its A1-A4 its B1-B4 its C1-C4		Ou	tputs 1-4	00	00			

5. Click Add.

Tools for Changing Parameters

Some parameters are accessible through RSLogix 5000 software. The alternative is to use Explicit Messaging from the Ethernet module.

Follow these steps to change parameters by using Explicit Messaging.

1. Create a Set Attribute Single MSG instruction in the ladder logic program.

Message Configuration - SetHomeMethodMS	c 🛛 🔀
Configuration Communication Tag	T
Service Set Attribute Single Type: Service 10 (Hex) Class: 374 (Hex) Instance: 232 Attribute: 0 (Hex)	Source Element: HomingMethod Source Length: 1 Bytes: Destination New Tag
Enable Enable Error Code: Error Code: Error Path: Error Path: Error Text:	© Done Done Length: 0 └── Timed Out ←
OK	Cancel Apply Help

- 2. Use a Class value of 374 (Hex).
- 3. Use the ID of the parameter as listed in <u>Appendix C</u> as the Instance.
- **4.** Use the Attribute value to reflect the format of the value and the nonvolatile status of the value.

Attribute	Format	Memory Stored In
0	32-bit integer	Volatile
1	32-bit integer	Nonvolatile
2	32-bit floating point	Volatile
3	32-bit floating point	Nonvolatile
4	String	Volatile
5	String	Nonvolatile

Configure Drive Mode with Explicit Messaging

These Kinetix 300 drive modes can be set via explicit messaging:

- Master Gearing
- Step and Direction
- Analog Velocity
- Analog Current
- Indexing

Set the drive mode by entering the parameters from the appropriate table via EtherNet/IP Explicit Messaging or through the MotionView software. For Indexing mode see page 101.

Table 62 - Master Gearing

ID	Parameter Name	Description	Value
266	Drive Mode	Set to Master Gearing	2
79	M2SRatioMaster	Master to system ratio (master counts)	Range: -3276732767
80	M2SRatioSystem	Master to system ratio denominator (system counts)	Range: 132767
29	EnableSwitchType	Enable switch function	0 = Inhibit only 1 = Enable as soon as asserted

IMPORTANT Do not set parameter 80 to 0 or unexpected motion will occur.

Table 63 - Step and Direction

ID	Parameter Name	Description	Value
266	Drive Mode	Set to Step and Direction	3
79	M2SRatioMaster	Master to system ratio numerator (master counts)	Range: -3276732767
29	EnableSwitchType	Enable switch function	0 = Inhibit only 1 = Enable as soon as asserted

ID	Parameter Name	Description	Value
266	Drive Mode	Set to Analog Velocity	4
36	VelocityScale	Analog input velocity reference scale: Velocity = Vinput x VelocityScale	Range: -1000010000 rpm/V
76	AccelLimit	Accel value for Velocity mode	Range: 0.15,000,000 UU/s
77	DecelLimit	Decel value for Velocity mode	Range: 0.15,000,000 UU/s
75	EnableVelAccDec	Enable Accel/Decel function for Velocity mode	0 = Disable 1 = Enable
89	AnalogInput1Deadband	Analog input dead-band. Applied when used as a velocity reference.	Range: 0100 mV
90	AnalogInput10ffset	Analog input offset. Applied when used as current/ velocity reference.	Range: -10.00010.000
85	AnalogOutFunction	Analog output function	0 = Not assigned 1 = Phase current (rms) 2 = Phase current (peak value) 3 = Motor velocity 4 = Phase current R 5 = Phase current S 6 = Phase current T 7 = Iq current 8 = Id current
86	AnalogOutVelocityScale	Analog output scale for velocity quantities	Range: 010 mV/rpm
29	EnableSwitchType	Enable switch function	0 = Inhibit only 1 = Enable as soon as asserted

Table 64 - Analog Velocity

Table 65 - Analog Current

ID	Parameter Name	Description	Value
266	Drive Mode	Set to Analog Current	5
35	CurrentScale	Current scale	Range: - X+X Amps/Volt X = drive peak output current/10
89	AnalogInput1Deadband	Analog input dead-band. Applied when used as a velocity reference.	Range: 0 100 mV
90	AnalogInput10ffset	Analog input offset. Applied when used as current/ velocity reference.	Range: -10,00010,000
85	AnalogOutFunction	Analog output function	0 = Not assigned 1 = Phase current (rms) 2 = Phase current (peak value) 3 = Motor velocity 4 = Phase current R 5 = Phase current S 6 = Phase current T 7 = Iq current 8 = Id current
87	AnalogOutCurrentScale	Analog output scale for current related quantities.	Range: 010V/A
29	EnableSwitchType	Enable switch function	0 = Inhibit only 1 = Enable as soon as asserted

Configure Drive for Linear Motors and Direct Drive Stages

Use this section to configure your Kinetix 300 drive for use with linear motor and linear stages.

Motor Temperature Sensor

For LDAT-Series linear thrusters, LDL-Series[™] and LDC-Series[™] linear motors and MPAS-Series linear stages, do the following.

- 1. Run MotionView software.
- 2. Click General Category.
- 3. Set Motor Temperature Sensor to Enable.

Understanding Encoder Resolution Setting

<u>Figure 76</u> shows the relationship of Resolution (x1) and Resolution (x4).

Figure 76 - Relationship between Resolution (1x) and Resolution (4x)

Here is a simple example.

EXAMPLE	If Resolution $(x1) = 4 \mu m$, then Resolution $(x4) = 1 \mu m$	
---------	---	--

Change the Encoder Resolution for an Incremental Encoder

The encoder resolution defaults to 5 μm per encoder count. If you must change the resolution, do this.

- 1. Run the MotionView software.
- 2. From the Drive Organizer, click Motor.
- 3. Click Change Motor.
- 4. Click Custom Motor.
- 5. Click Create Custom.
- 6. Create a Vendor Name.

EXAMPLE AB Custom

7. Create a Motor Model.

- **8.** Enter either the Resolution (x1) or the Resolution (x4) value.
- 9. Click Save File.
- 10. Enter <filename>.cmt.xml.
- 11. Click Update Drive.

This important message appears.

12. Answer yes or no according to your motor needs.

This important message appears.

IMPORTANT We recommended you do auto-phasing when commissioning new motors and wiring.

If you choose auto phasing, the following appears.

13. Follow the instructions in the dialog box.

If your system is wired by using one of the interconnect diagrams in <u>Appendix A</u>, then you get the following results.

Parameter	Value
Resolution (x1)	20 µm
Resolution (x4)	5 μm
Halls order	3
Inverted	Checked
B lead A for forward	Unchecked

Troubleshooting the Kinetix 300 Drive System

Торіс	Page
Safety Precautions	153
General Troubleshooting	154
Clearing Faults	157

Safety Precautions

Observe the following safety precautions when troubleshooting your Kinetix 300 drive.

ATTENTION: DC bus capacitors may retain hazardous voltages after input power has been removed. Before working on the drive, measure the DC bus voltage to verify it has reached a safe level or wait the full time interval listed on the drive warning label. Failure to observe this precaution could result in severe bodily injury or loss of life.

Do not attempt to defeat or override the drive fault circuits. You must determine the cause of a fault and correct it before you attempt to operate the system. If you do not correct a drive or system malfunction, it could result in personal injury and/ or damage to the equipment as a result of uncontrolled machine system operation.

Test equipment (such as an oscilloscope or chart recorder) must be properly grounded. Failure to include an earth ground connection could result in a potentially fatal voltage on the oscilloscope chassis.

General Troubleshooting

See the <u>Error Codes</u> section below to identify anomalies, potential causes, and appropriate actions to resolve the anomalies. If anomalies persist after attempting to troubleshoot the system, contact your Allen-Bradley representative for further assistance. To determine if your Kinetix 300 drive has an error, see the table below.

Display Behavior

By default, if there is no activity on the input keypad for 30 seconds, the Kinetix 300 drive continuously scrolls the drives' IP address.

Upon powerup, the display shows its status: diS (disabled) or run (enabled), then after 30 seconds, the drive alternately scrolls the drives' IP address along with its status.

If the Kinetix 300 drive is faulted, the drive displays the fault code (nonscrolling). Then after 30 seconds, the drive alternately scrolls the drives' IP address along with its fault code.

Error Codes

The following list is designed to help you resolve anomalies.

When a fault is detected, the status indicator displays an E and a two-digit error code until the anomaly is cleared.

Error Code	Anomaly	Possible Cause	Action/Solution	
-	Status indicator not displaying any messages.	No AC power or back-up power.	Verify AC power or back-up power is applied to the Kinetix 300 drive.	
		Internal power supply malfunction.	Call your Allen-Bradley representative.	
-	Motor jumps when first enabled.	Motor wiring error.	Check motor wiring.	
		Incorrect motor chosen.	Verify the proper motor is selected.	
E04 Motor overtemperature.		Motor thermostat trips due to: • High motor ambient temperature. • Excessive current.	 Operate within (not above) the continuous torque rating for the ambient temperature 40 °C (104 °F) maximum). Lower ambient temperature, increase motor cooling. 	
		Motor wiring error.	Check motor wiring.	
		Incorrect motor selection.	Verify the proper motor has been selected.	
E06	Hardware overtravel.	Dedicated overtravel input is inactive.	Check wiring.Verify motion profile.	
E07	Feedback lost.	The feedback wiring is open, shorted, or missing.	 Check motor encoder wiring. Make sure that the motor is recognized from drive's Web-based configuration motor screen 	

Table 66 - Error Codes

Table 66 - Error Codes (continued)

Error Code	Anomaly	Possible Cause	Action/Solution	
E09	Bus undervoltage.	Low AC line/AC power input.	 Verify voltage level of the incoming AC power. Check AC power source for glitches or line drop. Install an uninterruptible power supply (UPS) on your AC input. 	
E10	Bus overvoltage.	Excessive regeneration of power. When the motor is driven by an external mechanical power source, it may regenerate too much peak energy through the Kinetix 300 drives power supply. The system faults to save itself from an overload.	 Change the deceleration or motion profile. Use a larger system (motor and Kinetix 300 drive). Use a resistive shunt. If a shunt is connected, verify the wiring is correct. 	
		Excessive AC input voltage.	Verify input is within specifications.	
E11	Illegal Hall state.	Incorrect phasing.	Check the Hall phasing.	
		Bad connections.	 Verify the Hall wiring. Verify 5V power supply to the encoder. 	
E12	Home search failed.	Home sensor and/or marker is outside the overtravel limits.	Check wiring.Reposition the overtravel limits or sensor.	
E14	Ethernet I/O connection lost.	Ethernet I/O Connection lost.	Check wiring and Ethernet cables and routing. Check controller program to be sure that I/O is scanned at correct RPI rate.	
E16	Software overtravel.	Programmed overtravel limit has been exceeded.	 Verify motion profile. Verify overtravel settings are appropriate. 	
E18	Overspeed fault.	Motor speed has exceeded 125% of maximum rated speed.	 Check cables for noise. Check tuning.	
E19	Excess position error.	Position error limit was exceeded.	Increase following error limit or time.Check position loop tuning.	
E23	Drive Thermal Protection	The internal filter algorithm protecting the drive from overheating has tripped.	 Reduce acceleration rates. Reduce duty cycle (ON/OFF) of commanded motion. Increase time permitted for motion. Use larger Kinetix 300 drive and motor. Check tuning. 	
E26	Index parameter out of range.	Parameters specified in the index table are beyond system capabilities.	Verify index parameters, such as position and velocity.	
E27	Absolute move fault	Initiated move without being homed.	When using an absolute encoder home the axis before attempting an absolute move.	
E30	Encoder communication fault.	Communication was not established with an intelligent encoder.	 Verify motor selection. Verify the motor supports automatic identification. Verify motor encoder wiring. 	
E31	Encoder data.	Encoder data is corrupted.	Replace the motor/encoder.	
E39	Safe torque-off while enabled.	The safety circuit was opened while drive was enabled or while attempting to enable.	Check safety circuit.	
E43	Drive enable input.	An attempt was made to enable the axis through software while the Drive Enable hardware input was inactive.	Verify that Drive Enable hardware input is active whenever the drive is enabled through software.	
		The Drive Enable input transitioned from active to inactive while the axis was enabled.		
E44	Controller changed to PROG mode.	Program downloaded or turned key on logix controller to program position.	Place controller back in RUN mode, clear faults.	

Table 66 - Error Codes (continued)

Error Code	Anomaly	Possible Cause	Action/Solution
E67	Operating system failed.	Hardware or configuration failure.	 Cycle power. Check configuration settings to be sure that drive tags setting are valid. Check your program to ensure there are not explicit messages to internal drive variables which have been noted as unpublished or reserved.
E70	Memory module error.	Bad memory module	Replace memory module
E72	Drive temperature too high. The heat sink temperature sensor has detects an overtemperature condition.	Improper airflow/environmental temperature exceeds specifications or an application anomaly .	Check for clogged vents or defective fan. Make sure cooling is not restricted by insufficient space around the unit. Check ambient temperature in enclosure. Reduce acceleration rates. Reduce duty cycle (ON/OFF) of commanded motion. Increase time permitted for motion.
E74	Drive has exceeded peak current limit. Drive cannot regulate current properly.	Motor cables shorted.	Verify continuity of motor power cables and connector.
		Motor winding shorted internally.	Disconnect motor power cables form the motor. If the motor is difficult to turn by hand, it must be replaced.
		The machine duty cycle requires an RMS current exceeding the continuous rating of the controller.	Change the command profile to reduce speed or increase time.
		Operation above continuous power rating and/or product environmental rating.	Verify ambient temperature is not too high. Operate within the continuous power rating. Reduces acceleration rates.
		The Kinetix 300 drive has a short circuit overcurrent, or failed component.	Remove all power and motor connections and preform a continuity check form the DC bus to the U, V, and W motor outputs. If a continuity exists, check for wire fibers between terminal or send drive in for repair.
E76	Blank memory module.	A Blank MEM module has been inserted into the drive.	Push and hold the drive's enter key (bottom most red button) on the drive's front display until the drive shows "bUSY". This will make the drive format the blank memory module for usage with the drive.
E91	User watchdog has timed out.	Ladder program error.	 Not writing to WatchDogKick Tag frequently enough to prevent timeout. Watchdog timeout period set to too low a value. Increase timeout period or change controller application to kick watchdog more frequently.
E92	Bad battery.	 Tamagawa absolute feedback battery voltage low or missing. A battery error is set at drive powerup when main power to the encoder is not present or the battery voltage is below 2.75V. 	Replace battery.
E93	Motion set-up parameters calculate an acceleration value above or below the drive capability.	Check indexing profiles or motion set-up profiles.	Increase or decrease acceleration profile. Increase or decrease permitted time for motion.
E94	Motor or motor feedback cable.	Motor or feedback device malfunction.	Check motor power/feedback wiring.Replace motor or encoder.
		Recommenced grounding, per installation instructions, has not been followed.	 Verify grounding. Route feedback cables away from noise sources. See System Design for Control of Electric Noise Reference Manual, publication <u>GMC-RM001</u>.
E95	Wrong Indexing Mode	Index Type or ReferenceSource not supported in configured Linear/Rotary Unwind mode.	 Change the Index Type or ReferenceSource to values that are supported by selecting Linear or Rotary Unwind mode

Clearing Faults

This section provides methods for clear faults in the Kinetix 300 drive. You can clear drive faults by using digital inputs or drive parameters.

Use Digital Inputs to Clear Faults

You can use MotionView software to clear faults by configuring a digital input as Fault Reset. To clear faults by using this input, you must make the input active until the fault clears and then deactivate it.

Use Drive Parameters to Clear Faults

You can use the Kinetix 300 drive parameter to reset faults by using Explicit Messaging or UserDefinedDataLink.

Explicit Messaging

Send Explicit Messages from within the RSLogix 5000 software to Class 374 (hex) Instance 53, Attribute 0 to set it to a 1 and then back to a 0 when the fault is cleared.

Message Configuration - SetOpModeEIPMSG	
Configuration* Communication Tag	1
Message <u>Type:</u> CIP Generic	•
Service Set Attribute Single	Source Element: FaultReset
.The	Source L <u>e</u> ngth: 4 📫 (Bytes)
Service 10 (Hex) Class: 374 (Hex)	Destination
Instance: 53 Attribute: 0 (Hex)	Ne <u>w</u> Tag
🔘 Enable 🌒 Enable Waiting 🌒 Start	Done Done Length: 0
Error Code: Extended Error Code:	🥅 Timed Out 🗲
Error Path: Error Text:	
ОК	Cancel <u>A</u> pply Help

UserDefinedDataLink

Drive parameters used in the <u>Explicit Messaging</u> section can be mapped into the integer UserDefinedDataLink by using MotionView software. Then the parameter can be toggled by using the UserDefinedIntegerData0 or UserDefinedIntegerData1 tags within RSLogix 5000 software.

Drive Enable

The drive clears runtime faults if the drive enable command from RSLogix 5000 software is cycled and the fault reset in the MotionView software is configured for On Disable. For the drive to be enabled, the DriveEn bit in the Output Assembly needs to be set to 1. By changing that from 1 back to 0, the fault clears as the drive disables.

Kinetix 300 Drive Safe Torque-off Feature

This appendix introduces you to how the safe torque-off feature meets the requirements for ISO 13849-1 performance level d (PLd) safety category 3.

Торіс	Page
Certification	159
Description of Operation	161
Functional Proof Tests	161
PFD and PFH Definitions	162
PFD and PFH Data	162
Safe Torque-off Connector Data	163
Wiring Your Safe Torque-off Circuit	164
Kinetix 300 Drive Safe Torque-off Feature	166
Kinetix 300 Drive Safe Torque-off Wiring Diagrams	167
Safe Torque-off Signal Specifications	168

Certification

The safe torque-off circuit is type-approved and certified for use in safety applications up to and including ISO 13849-1 performance level d (PLd) safety category 3.

The TÜV Rheinland group has approved the Kinetix 300 drives for use in safetyrelated applications up to ISO 13849-1 performance level d (PLd) safety category 3, in which the de-energized state is considered to be the safe state. All of the examples related to I/O included in this manual are based on achieving deenergization as the safe state for typical machine safety systems.

Important Safety Considerations

The system user is responsible for the following:

- Validation of any sensors or actuators connected to the drive system
- Completing a machine-level risk assessment
- Certification of the machine to the desired ISO 13849-1 performance level
- Project management and proof testing
- Programming the application software and the device configurations in accordance with the information in this safety reference manual and the drive product manual

Safety Category 3 Requirements

Safety-related parts are designed with these attributes:

- A single fault in any of these parts does not lead to the loss of the safety function
- A single fault is detected whenever reasonably practicable
- Accumulation of undetected faults can lead to the loss of the safety function, which results in an uncontrolled coast to stop

Stop Category Definition

Stop category 0 is achieved with immediate removal of power to the actuator.

IMPORTANT In the event of drive or control failure, the most likely stop category is category 0. When designing the machine application, timing and distance should be considered for a coast to stop. For more information regarding stop categories, see EN 60204-1.

Performance Level and Safety Integrity Level (SIL) CL3

For safety-related control systems, Performance Level (PL), according to ISO 13849-1, and SIL levels, according to EN 61508 and EN 62061, include a rating of the systems ability to perform its safety functions. All of the safety-related components of the control system must be included in both a risk assessment and the determination of the achieved levels.

See the ISO 13849-1, EN 61508, and EN 62061 standards for complete information on requirements for PL and SIL determination.

Description of Operation

The safe torque-off feature provides a method, with sufficiently low probability of failure on demand, to force the power-transistor control signals to a disabled state. When disabled, or any time power is removed from the safety enable inputs, all of the drives output-power transistors are released from the ON state, effectively removing motive power generated by the drive. This results in a condition where the motor is in a coasting condition (stop category 0). Disabling the power transistor output does not provide mechanical isolation of the electrical output, which may be required for some applications.

Under normal drive operation, the safe torque-off switches are energized. If either of the safety enable inputs are de-energized, the gate control circuit is disabled. To meet ISO 13849-1 (PLd) both safety channels must be used and monitored.

ATTENTION: Permanent magnet motors may, in the event of two simultaneous faults in the IGBT circuit, result in a rotation of up to 180 electrical degrees.

Functional Proof Tests

The functional safety standards require that functional proof tests be performed on the equipment used in the system. Proof tests are performed at user-defined intervals, not to exceed one year, and are dependent upon PFD and PFH values.

IMPORTANT Users specific applications determine the time frame for the proof test interval, but it must not exceed one year due to the use of switches internal to the drive, as required by ISO 13849-1.

To proof test the safe torque-off function, you must interrupt power to the inputs of the safe torque-off function at pins STO-4 and STO-6 and verify that the drive is in the disabled state.

Proof Test Truth Table

Safety Function State	Safety Input 1 (STO-4)	Safety Input 2 (STO-6)	Safety Status Output (STO-3)	Drive Status Indication ⁽¹⁾
Normal operation	Energized	Energized	Energized	Run
Safe torque-off mismatch	ff mismatch Energized De-energized Energized E39		E39	
	De-energized	Energized	Energized	E39
Safe torque-off function engaged	De-energized	De-energized	De-energized	E39

(1) Drive display changes to condition shown on enable of the drive (IN_A3 Enable).

Normal operation of the safe torque-off function, if monitored and verified, constitutes the proof test. A safe torque-off mismatch results in error code E39.

Error Code	Fault Message RSLogix (HIM)	Anomaly	Potential Cause	Possible Resolution
E39	DriveHardFault (safe torque-off HW FIt)	Safe torque-off function mismatch. Drive will not allow motion.	 Loose wiring at safe torque-off (STO) connector. Cable/header not seated properly in safe torque-off (STO) connector. Safe torque-off circuit missing +24V DC. 	 Verify wire terminations, cable/header connections, and +24V. Reset error and run proof test. If error persists, return the drive to Rockwell Automation.

Troubleshooting the Safe Torque-off Function

ATTENTION: The safe torque-off fault (E39) is detected upon demand of the safe torque-off function. After troubleshooting, a proof test must be performed to verify correct operation.

PFD and PFH Definitions

PFD and PFH Data

Safety-related systems can be classified as operating in either a Low Demand mode, or in a High Demand/Continuous mode:

- Low Demand mode: where the frequency of demands for operation made on a safety-related system is no greater than one per year or no greater than twice the proof-test frequency.
- High Demand/Continuous mode: where the frequency of demands for operation made on a safety-related system is greater than once per year or greater than twice the proof test interval.

The SIL value for a low demand safety-related system is directly related to orderof-magnitude ranges of its average probability of failure to satisfactorily perform its safety function on demand or, simply, average probability of failure on demand (PFD). The SIL value for a High Demand/Continuous mode safety-related system is directly related to the probability of a dangerous failure occurring per hour (PFH).

These PFD and PFH calculations are based on the equations from EN 61508 and show worst-case values.

This table provides data for a 20-year proof test interval and demonstrates the worst-case effect of various configuration changes on the data.

PFD and PFH for 20-year Proof Test Interval

Attribute	Value
PFH [1e-9]	5.9
PFD [1e-3]	1.0

Safe Torque-off Connector Data

This section provides safe torque-off (STO) connector and header information for the Kinetix 300 drive safe torque-off.

STO Connector Pinouts

Headers extend the STO connector signals for use in wiring or to defeat (not use) the safe torque-off function.

6-pin Safe Torque-off (STO) Connector

(2097-V32PR4 is shown)

STO Pin	Description	Signal
1	+24V DC output from the drive	+24V DC control
2	+24V DC output common	Control COM
3	Safety status	Safety Status
4	Safety input 1 (+24V DC to enable) Safety Input 1	
5	Safety common	Safety COM
6	Safety input 2 (+24V DC to enable)	Safety Input 2

Wiring Your Safe Torque-off Circuit

This section provides guidelines for wiring your Kinetix 300 safe torque-off drive connections.

European Union Directives

If this product is installed within the European Union or EEC regions and has the CE mark, the following regulations apply.

For more information on the concept of electrical noise reduction, see System Design for Control of Electrical Noise Reference Manual, publication <u>GMC-RM001</u>.

EMC Directive

This unit is tested to meet Council Directive 2004/108/EC Electromagnetic Compatibility (EMC) by using these standards, in whole or in part:

- EN 61800-3 Adjustable Speed Electrical Power Drive Systems, Part 3 - EMC Product Standard including specific test methods
- EN 61000-6-4 EMC Emission Standard, Part 2 Industrial Environment
- EN 61000-6-2 EMC Immunity Standard, Part 2 Industrial Environment

The product described in this manual is intended for use in an industrial environment.

CE Conformity

Conformity with the Low Voltage Directive and Electromagnetic Compatibility (EMC) Directive is demonstrated by using harmonized European Norm (EN) standards published in the Official Journal of the European Communities. The safe torque-off circuit complies with the EN standards when installed according instructions found in this manual.

CE Declarations of Conformity are available online at: www.rockwellautomation.com/products/certification/ce.

Low Voltage Directive

These units are tested to meet Council Directive 2006/95/EC Low Voltage Directive. The EN 60204-1 Safety of Machinery-Electrical Equipment of Machines, Part 1-Specification for General Requirements standard applies in whole or in part. Additionally, the standard EN 50178 Electronic Equipment for use in Power Installations apply in whole or in part.

Safe Torque-off Wiring Requirements

These are the safe torque-off (STO) wiring requirements. Wire should be copper with 75 °C (167 °F) minimum rating.

IMPORTANT	IMPORTANT The National Electrical Code and local electrical codes take precedence o values and methods provided.	
IMPORTANT	Stranded wires must terminate with ferrules to prevent short circuits, per table D7 of EN 13849.	

Safe Torque-off (STO) Terminal Plug

Safe Torque-off (STO) Terminal Plug Wiring

Safe Torque-off (STO) Connector		Recommended Wire Size		Strip Length	Torque Value
Pin	Signal	Stranded Wire with Ferrule mm ² (AWG)	Solid Wire mm ² (AWG)	mm (in.)	N•M (ID•IN)
STO-1 STO-2 STO-3 STO-4 STO-5 STO-6	+24V DC Control Control COM Safety Status Safety Input 1 Safety COM Safety Input 2	0.75 (18)	1.5 (16)	6 (0.25)	0.2 (1.8)

IMPORTANT	Pins STO-1 (+24V DC Control) and STO-2 (Control COM) are used only by the motion-allowed jumpers to defeat the safe torque-off function. When the safe torque-off function is in operation, the 24V supply must come from an external source.
IMPORTANT	To be sure of system performance, run wires and cables in the wireways as established in the user manual for your drive.

Kinetix 300 Drive Safe Torque-off Feature

The safe torque-off circuit, when used with suitable safety components, provides protection according to ISO 13849-1 (PLd). The safe torque-off option is just one safety control system. All components in the system must be chosen and applied correctly to achieve the desired level of operator safeguarding.

The safe torque-off circuit is designed to safely remove power from the gate firing circuits of the drives output power devices (IGBTs). This prevents them from switching in the pattern necessary to generate AC power to the motor.

You can use the safe torque-off circuit in combination with other safety devices to meet the stop and protection-against-restart requirements of ISO 13849-1.

ATTENTION: This option is suitable for performing mechanical work on the drive system or affected area of a machine only. It does not provide electrical safety.

SHOCK HAZARD: In Safe Torque-off mode, hazardous voltages may still be present at the motor. To avoid an electric shock hazard, disconnect power to the motor and verify that the voltage is zero before performing any work on the motor.

Safe Torque-off Feature Bypass

The drive is supplied from the factory with the safe torque-off circuit enabled. The drive is not operational until +24V is present at terminals STO-4 and STO-6. When safety connections are not required, the drive can be operated with the safety circuit disabled.

Use jumper wires, as shown, to defeat the safe torque-off function.

Figure 78 - STO Motion-allowed Jumpers

IMPORTANT Pins STO-1 (+24V DC Control) and STO-2 (Control COM) are used only by the motion-allowed jumpers to defeat the safe torque-off function. When the safe torque-off function is in operation, the 24V supply must come from an external source.

Kinetix 300 Drive Safe Torque-off Wiring Diagrams

This appendix provides typical wiring diagrams for the Kinetix 300 drive safe torque-off feature with other Allen-Bradley safety products.

For additional information regarding Allen-Bradley safety products, including safety relays, light curtain, and gate interlock applications, see the Safety Products Catalog, website <u>http://www.ab.com/catalogs</u>.

The drive is shown in a single-axis relay configuration for both category 0 and category 1 stops per EN-60204-1 Safety of Machinery Directive. These are examples, however, and user applications can differ based on the required overall machine performance level requirements.

```
IMPORTANTThe Kinetix 300 drive has been qualified and rated as a component to meet ISO<br/>13849-1 performance level d (PLd), safety-level category 3. Dual inputs and<br/>drive monitoring of the safe torque-off circuit, STO-4 and STO-6, are done to<br/>prevent drive enable should either or both of these inputs not function.<br/>It is suggested to evaluate the entire machine performance level required with<br/>a risk assessment and circuit analysis. Contact your local distributor or Rockwell<br/>Automation Sales for more information.
```

Figure 79 - Single-axis Relay Configuration (Stop Category 0) with Automatic Reset

Pins 1 and 2 are not used when using Safety Inputs. Pin 3 is a sinking output.

Figure 80 - Single-axis Relay Configuration (Stop Category 1) with Automatic Reset

(1) The digital input, configured for Abort Index in MotionView software, must be active-high when the safety function is requested, so an interposing relay may be required to invert the signal. Digital input common (IN_x_COM) must be used in this signal activation/ de-activation transition.

You can also bring this input into a PLC where you can use an AOP (add on profile) or assembly object to activate the recommended digital input (abort index).

Safe Torque-off Signal Specifications

This table provides specifications for the safe torque-off signals used in the Kinetix 300 servo drives.

Attribute	Value
Safety inputs ⁽¹⁾	Insulated, compatible with single-ended output (+24V DC)
	Enable voltage range: 2024V DC
	Disable voltage range: 01.0V DC
Input impedance	6.8 k Ω
Safety status	Isolated Open Collector (Emitter is grounded.)
Output load capability	100 mA
Digital outputs max voltage	30V DC

(1) Safety inputs are not designed for pulse testing.

Safety Input and Output Schematics

The following are generic safety input and output schematics for the Kinetix 350 drive.

Figure 81 - Safety Input

Notes:

Interconnect Diagrams

Торіс	
Interconnect Diagram Notes	172
Power Wiring Examples	
Kinetix 300 Drive/Rotary Motor Wiring Examples	176
Kinetix 300 Drive/Actuator Wiring Examples	180
Kinetix 300 Drive/Linear Motor Wiring Examples	179
Kinetix 300 Drive to MicroLogix Controller Wiring Examples	
Kinetix 300 Drive Master Gearing Wiring Example	
Motor Brake Currents	185
System Block Diagrams	186

Interconnect Diagram Notes

This appendix provides wiring examples to assist you in wiring the Kinetix 300 system. The notes below apply to the wiring examples on the pages that follow.

Note	Information
1	For power wiring specifications, see <u>Power Wiring Requirements</u> on <u>page 65</u> .
2	For input fuse and circuit breaker sizes, see <u>Circuit Breaker/Fuse Specifications</u> on page 22.
3	Place the AC (EMC) line filters as close to the drive as possible and do not route very dirty wires in the wireway. If routing in wireway is unavoidable, use shielded cable with shields grounded to the drive chassis and filter case. For AC line filter specifications, see Kinetix Servo Drives Specifications Technical Data, publication <u>GMC-TD003</u> . This filter does not apply to 2097-V32PRx drives because they have integrated AC line filters.
4	Terminal block is required to make connections. Configure one pair from the Digital OUT-1 OUT-4, pins 4350, as Brake in MotionView software. For Digital Output specifications, see Digital Outputs on page 45.
5	Contactor coil (M1) needs integrated surge suppressors for AC coil operation. See Kinetix Servo Drives Specifications Technical Data, publication GMC-TD003.
6	See the Motor Brake Currents table on page 185 to size the interposing relay for your application.
7	Drive Enable input must be opened when main power is removed, or a drive fault occurs. A delay of at least 1.0 second must be observed before attempting to enable the drive after main power is restored.
8	Cable shield clamp must be used to meet CE requirements. No external connection to ground is required.
9	For motor cable specifications, see the Kinetix Motion Control Selection Guide, publication <u>GMC-SG001</u> .
10	Motor power cables (2090-XXNPMF-xxSxx and 2090-CPBM6DF-16AAxx) have a drain wire that must be folded back under the cable shield clamp.
11	LDAT-xxxxxxB, MPL-Axxx, MPM-Axxx, MPF-Axxx, MPS-Axxx, MPAR-Axxx, MPAI-Axxx, and MPAS-Axxx, encoders use the +5V DC supply. LDAT-xxxxxxD, MPL-Bxxx, MPM-Bxxx, MPF-Bxxx, MPS-Bxxx, MPAR-Bxxx, MPAI-Bxxx, and MPAS-Bxxx, encoders use +9V DC.
12	Brake connector pins are labeled plus (+) and minus (-) or F and G respectively. Power connector pins are labeled U, V, W, and GND or A, B, C, and D respectively.

Power Wiring Examples

You must supply input power components. The single-phase and three-phase line filters are wired downstream of fusing and the M1 contactor.

In this example, the 2097-V31PR*x* drives are wired to use the voltage doubling circuit. The 120V input voltage provides 240V output to motors. The 2097-V33PR*x* drives are wired for single-phase 120V operation.

Rockwell Automation Publication 2097-UM001D-EN-P - November 2012

In this example, single-phase 240V AC is applied to 2097-V31PR*x* and 2097-V32PR*x* drives.

IMPORTANT The 2097-V32PRx models have integrated AC line filters and do not require the AC line filter shown in this diagram.

In this example, three-phase 240V AC is applied to 2097-V33PR*x* drives and 480V AC is applied to 2097-V34PR*x* drives.

2097-IN002, for additional installation information.

Shunt Resistor Wiring Example

See the Kinetix Servo Drives Specifications Technical Data, publication <u>GMC-</u><u>TD003</u>, for the Bulletin 2097-Rx shunt resistors available for the Kinetix 300 drives. See the Kinetix 300 Shunt Resistor Installation Instructions, publication

Kinetix 300 Drive/Rotary Motor Wiring Examples

These wiring diagrams apply to Kinetix 300 drives with compatible rotary motors.

Figure 87 - MP-Series (Bulletin MPL-A/B and MPS-A/B) Motors

Figure 88 - MP-Series (Bulletin MPL-A/B, MPM-A/B, and MPF-A/B) Motors

Figure 89 - Kinetix 300 Drive with TL-Series (TLY-A) Motors

Kinetix 300 Drive/Linear Motor Wiring Examples

Exposed shield secured under clamp.

Clamp Screws (2)

1

Turn clamp over to hold small cables secure These wiring diagrams apply to Kinetix 300 drives with compatible linear motors.

Figure 90 - Kinetix 300 Drive with LDC-Series and LDL Linear Motors

Kinetix 300 Drive/Actuator Wiring Examples

These wiring diagrams apply to Kinetix 300 drives with compatible linear actuators.

Figure 91 - Kinetix 300 Drive with MP-Series (Bulletin MPAS-A/B) Linear Stages and LDAT-Series Linear Thrusters

Figure 92 - Kinetix 300 Drive with MP-Series (Bulletin MPAR and MPAI) Electric Cylinders

Figure 93 - Kinetix 300 Drive with TL-Series (Bulletin TLAR) Electric Cylinders

Kinetix 300 Drive to MicroLogix Controller Wiring Examples

The Kinetix 300 drive accepts unipolar or bipolar inputs.

Figure 94 - Analog Velocity (or Current) Control Mode

Kinetix 300 Drive Master Gearing Wiring Example

This wiring diagram applies to Kinetix 300 drives.

Motor Brake Currents

Use these coil current values to size the interposing relay required for your application. See the interconnect diagram for your Kinetix 300 drive/motor beginning on page 176 for typical motor brake circuitry.

Table 68 - Motor Brake Coil Currents

Compatible Brake Motors/Actuators ⁽¹⁾	Coil Current	
MPL-x1510, MPL-x1520, MPL-x1530	0.430.53 A	
MPL-x210, MPL-x220, MPL-x230	0.460.56 A	
MPL/MPF-x310, MPL/MPF-x320, MPL/MPF-x330	0.450.55 A	
MPM- <i>x</i> 115		
MPS-x330		
MPL-x420, MPL-x430, MPL-x4520, MPL-x4530, MPL-x4540, MPL-B4560	0.5760.704 A	
MPM- <i>x</i> 130		
MPF-x430, MPF-x4530, MPF-x4540		
MPS- <i>x</i> 4540		
TLY-A110T, TLY-A120T, and TLY-A130T	0.180.22 A	
TLY-A220T and TLY-A230T	0.3330.407 A	
TLY-A2530P, TLY-A2540P, and TLY-A310M	0.3510.429 A	

(1) Use of the variable x indicates this specification applies to 230V and 460V motors.

System Block Diagrams

This power block diagram applies to 2097-V32PR*x*, 2097-V33PR*x*, and 2097-V34PR*x* servo drives.

Figure 96 - Power Block Diagram

This power block diagram applies to 2097-V31PR*x* servo drives. The voltagedoubler circuitry lets the drives with 120V input power get full performance from 240V motors.

(1) The 2097-Rx shunt module is external to the Kinetix 300 drive.

Notes:

Input and Output Assembly

Торіс	Page
Input and Output Assembly	189
Output Assembly Examples	195

Input and Output Assembly

The terms input and output refer to the point of view of the scanner device. Output data is produced by the scanner and consumed by the adapter. Input data is produced by the adapter and consumed by the scanner. The Kinetix 300 drive is an adapter device and the controller using RSLogix 5000 software as a scanner device.

The drive contains EtherNet/IP Assembly Object Instances that pertain to these RSLogix 5000 connection parameters:

- Input (actual values such as actual velocity, actual position)
- Output (enable and reference value going to the drive)
- Index Configuration (see <u>Indexing Category</u> on <u>page 101</u>)

Assembly instances are accessible by using Class 3 explicit messages as well as the Class 1 I/O messaging.

Kinetix 300 drive parameters are modifiable by using Explicit Messaging.

Attribute	Value	Comment		
Service type	Get Attribute Single	Service code 0x0E (hex)		
	Set Attribute Single	Service code 0x10 (hex)		
Class	374	Нех		
Instance	ID tag from <u>Appendix C</u>	-		
Attribute 0		DINT, RAM		
	1	DINT, MEM		
	2	REAL, RAM		
	3	REAL, MEM		
	4	String, RAM		
	5	String, MEM		

Table 69 - Drive Object Attributes

When a Kinetix 300 drive parameter is changed by using explicit messaging, the Set Attribute Single message instruction is directed at this class, the instance is the identifier of the actual parameter and the attribute depends upon the type of data being written.

IMPORTANT	If power is removed from the drive, data stored in RAM is lost. Data stored the memory module remains through power cycles.			
IMPORTANT	Memory module writes are limited to 1,000,000 per device. Make sure that all writes targeted at the memory module are necessary and not done as part of a background or cyclic task.			

Table 70 - Input Assembly

RSLogix 5000 Tags	Description
Fault	A non-zero value in this field means the connection to the drive is not operational and no other fields in the Input Assembly should be used.
DriveEn	A non-zero value in this field means the drive is currently enabled and the servo loops are closed.
PhysicalAxisFault	A non-zero value in this field means the drive has faulted.
PositionLockStatus	A non-zero value in this field means the drive is within the position tolerance window of the commanded position.
CurrentLimitStatus	A non-zero value in this field means the drive has reached the current limit. This does not mean the drive is limiting current if the current limit was set to a lower value than the drive or motor supports.
RegistrationEventStatus	A non-zero value in this field means the drive has captured a registration event and position.
IndexingStatus	A non-zero value in this field means the drive is currently operating out of the indexing table within the drive.
MotionComplete	A non-zero value in this field means the drive has completed a position based move. This bit does not apply when in Indexing Current mode.
PositiveOvertravelInput	A non-zero value in this field means the positive overtravel input to the drive has been asserted.
NegativeOvertravelInput	A non-zero value in this field means the negative overtravel input to the drive has been asserted.
HomingStatus	A non-zero value in this field means the drive is currently homing as configured by the Homing section of the MotionView software.
AxisHomedStatus	A non-zero value in this field means the drive has been successfully homed.
VelocityStandstillStatus	A non-zero value in this field means the drive is within the configured tolerance for being at zero velocity.

Table 70 - Input Assembly (continued)

RSLogix 5000 Tags	Description
VelocityLockStatus	A non-zero value in this field means the drive is within the configured tolerance around the commanded velocity.
PowerStructureEn	A non-zero value in this field means the drive power structure is currently enabled and providing current to the motor.
DigitalInputA1Status	A non-zero value in this field means this digital input on the drive is currently asserted.
DigitalInputA2Status	A non-zero value in this field means this digital input on the drive is currently asserted.
DigitalInputA3Status	A non-zero value in this field means this digital input on the drive is currently asserted.
DigitalInputA4Status	A non-zero value in this field means this digital input on the drive is currently asserted.
DigitalInputB1Status	A non-zero value in this field means this digital input on the drive is currently asserted.
DigitalInputB2Status	A non-zero value in this field means this digital input on the drive is currently asserted.
DigitalInputB3Status	A non-zero value in this field means this digital input on the drive is currently asserted.
DigitalInputB4Status	A non-zero value in this field means this digital input on the drive is currently asserted.
DigitalInputC1Status	A non-zero value in this field means this digital input on the drive is currently asserted.
DigitalInputC2Status	A non-zero value in this field means this digital input on the drive is currently asserted.
DigitalInputC3Status	A non-zero value in this field means this digital input on the drive is currently asserted.
DigitalInputC4Status	A non-zero value in this field means this digital input on the drive is currently asserted.
ActiveIndex	This field indicates the currently executing index from within the indexing table in the drive.
ActualVelocity	This field indicates the current velocity of the motor controlled by the drive.
ActualPosition	This field indicates the current position of the motor controlled by the drive.
PositionCommand	This field indicates the position the drive is moving the motor towards.
PositionError	This field indicates the error between the current command position and the actual position.
MotorCurrent	This field indicates the average RMS current being applied to the motor.
RegistrationPosition	This field indicates the position the motor was at when the registration input was asserted.
UserDefinedIntegerData0	This field is a copy of the current value of whatever parameter it was configured to be in the MotionView software (Data Link).
UserDefinedIntegerData1	This field is a copy of the current value of whatever parameter it was configured to be in the MotionView software (Data Link).
UserDefinedIntegerReal0	This field is a copy of the current value of whatever parameter it was configured to be in the MotionView software (Data Link).
UserDefinedIntegerReal1	This field is a copy of the current value of whatever parameter it was configured to be in the MotionView software (Data Link).

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Reserved	Registration EventStatus	Current LimitStatus	Reserved	Reserved	Position LockStatus	Physical AxisFault	Drive En
13	Reserved	Reserved						
4	Reserved	Axis Homed Status	Homing Status	Negative Overtravel Input	Positive Overtravel Input	Reserved	Motion Complete	Indexing Status
57	Reserved	·						
8	Reserved					Power Structure En	Velocity LockStatus	Velocity Standstill Status
911	Reserved							
12	Digital Input B4Status	Digital Input B3Status	Digital Input B2Status	Digital Input B1Status	Digital Input A4Status	Digital Input A3Status	Digital Input A2Status	Digital Input A1Status
1315	Reserved							
16	Reserved				Digital Input C4Status	Digital Input C3Status	Digital Input C2Status	Digital Input C1Status
1719	Reserved							
2023	ActiveIndex (DINT))						
2427	ActualVelocity (RE	AL)						
2831	ActualPosition (RE	AL)						
3235	PositionCommand	(REAL)						
3639	PositionError (REA	PositionError (REAL)						
4043	MotorCurrent (REAL)							
4447	RegistrationPosition (REAL)							
4851	UserDefinedIntegerData0 (DINT)							
5255	UserDefinedIntegerData1 (DINT)							
5659	UserDefinedIntege	UserDefinedIntegerReal0 (REAL)						
6064	UserDefinedIntegerReal1 (REAL)							

Table 71 - Input Assembly Instance (Assembly 113)

In this Input Assembly example, the parameter ActiveIndex with a range of 24...27 bytes is expanded to show the low byte, low middle byte, high middle byte, and high byte. These values are typical for each parameter in <u>Table 71</u>.

Table 72 - Input Assembly Example

Byte	Parameter Value			
20	ActiveIndex - Low byte			
21	ActiveIndex - Low middle byte			
22	ActiveIndex - High middle byte			
23	ActiveIndex - High byte			

Table 73 - Output Assembly

RSLogix 5000 Tags	Description
AbortIndex	Upon transition from 0 to 1 of this field the drive aborts the current index or position based move the drive is executing and decel to zero velocity.
StartMotion	Upon transition from 0 to 1 of this field the drive begins moving towards the position in the CommandPosition field below assuming the drive is enabled.
DefineHome	Upon transition from 0 to 1 of this field the drive defines the current position of the motor to be home.
AbortHoming	Upon transition from 0 to 1 of this field the drive aborts (decel to zero velocity) the homing operation.
StartHoming	Upon transition from 0 to 1 of this field the drive begins homing as configured by the Homing section of the MotionView software assuming the drive is enabled.
DriveEn	Upon transition from 0 to 1 of this field the drive enables, it turns on power structure, closes servo loops, tracks commands.
StartingIndex	This field defines the first index the drive should execute if the drive is operating in Indexing mode.
ReferenceSource	This field defines the type of control being exerted over EtherNet/IP network (0 = current, 1 = velocity, 2 = incremental position, 3 = absolute position, 4 = incremental registration, 5 = absolute registration, 6=Rotary Absolute, 7=Rotary Incremental, 8=Rotary Shortest Path, 9=Rotary Positive, 10=Rotary Negative).
AccelerationLimit	This field defines the maximum acceleration the drive uses in accelerating towards the commanded position.
DecelerationLimit	This field defines the maximum deceleration the drive uses in accelerating towards the commanded position.
CommandCurrentOrVelocity	This field defines the commanded current (Amps RMS) or Velocity (User Units/s) if the ReferenceSource is 0 or 1 respectively and the drive is enabled.
VelocityLimit	This field defines the maximum velocity the drive uses in the profile towards the commanded position.
CommandPosition	This field defines the next position command the drive should move the motor towards, takes effect only upon 0 to 1 transition of StartMotion field above.
RegistrationOffset	This field defines the offset from the registration event the drive should move to during an incremental or absolute registration based move.
UserDefinedIntegerData0	The value in this field is written to whatever parameter it was configured to be in the MotionView software (Data Link).
UserDefinedIntegerData1	The value in this field is written to whatever parameter it was configured to be in the MotionView software (Data Link).
UserDefinedIntegerRealO	The value in this field is written to whatever parameter it was configured to be in the MotionView software (Data Link).
UserDefinedIntegerReal1	The value in this field is written to whatever parameter it was configured to be in the MotionView software (Data Link).

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	Drive En	Reserved	Start Homing	Abort Homing	Define Home	Start Motion	Reserved	Abort Index
1	Reserved							
2	Reserved							
3	Reserved							
47	StartingIndex (DIN	Г)						
811	ReferenceSource (DINT)							
1215	AccelerationLimit (REAL)						
1619	DecelerationLimit (REAL)							
2023	CommandCurrentOrVelocity (REAL)							
2427	VelocityLimit (REAL	.)						
2831	CommandPosition (REAL)							
3235	RegistrationOffset (REAL)							
3639	UserDefinedIntegerData0 (DINT)							
4043	UserDefinedIntegerData1 (DINT)							
4447	UserDefinedIntegerReal0 (REAL)							
4851	UserDefinedIntegerReal1 (REAL)							

Table 74 - Output Assembly Instance (Assembly 114)

In this Output Assembly example, the parameter StartingIndex with a range of 4...7 bytes is expanded to show the low byte, low middle byte, high middle byte, and high byte. These values are typical for each parameter in <u>Table 74</u>.

Table 75 - Output Assembly Example

Byte	Parameter Value			
4	StartingIndex - Low byte			
5	StartingIndex - Low middle byte			
6	StartingIndex - High middle byte			
7	StartingIndex - High byte			

The Attribute Values in this example only apply to Class 374 and not to Class 4 (Assembly Objects).

Output Assembly Examples

This section provides examples of various motion profiles by showing which tags in the Output Assembly to manipulate.

You can manage the values in the Output Assembly by manipulating them in ladder code or by editing the tag directly in the tag structure.

IMPORTANT The Kinetix 300 drive must be in EtherNet/IP External Reference mode.

This is an example of moving a value into the .ReferenceSource of the Output Assembly.

Figure 98 - Set Value of Output Assembly Tag

This is an example of latching-on the .StartMotion bit of the Output Assembly.

Figure 99 - Turn-on the Output Assembly Tag

This is an example of turning on the .StartMotion bit of the Output Assembly by editing the tag directly.

Name 🛆	Value 🗧
	{}
⊡-K300_N1:0	{}
K300_N1:0.AbortIndex	0
K300_N1:0.StartMotion	1
K300_N1:0.DefineHome	0
K300_N1:0.AbortHoming	0

Figure 100 - Changing a Value in the Output Assembly Tag Structure

Incremental Position Point-to-Point Profile

To execute an incremental position move, set these tag values as shown.

Table 76 - Output Assembly Tags

RSLogix 5000 Tags	Value
ReferenceSource	Set value to 2.
CommandPosition	Configure the motion profile by setting tags to the desired values.
VelocityLimit	
AccelerationLimit	
DecelerationLimit	
DriveEn	Enable the drive by turning tag on.
StartMotion	Start profile by turning tag on.

Velocity Motion Profile

To execute a velocity move, set these tag values as shown.

Table 77 - Output Assembly Tags

ID Tag	RSLogix 5000 Tags	Value
N/A	ReferenceSource	Set value to 1.
N/A	CommandCurrentOrVelocity	Set the velocity value.
75 ⁽¹⁾	Enable Accel/Decel function/limits for Velocity mode	 Use internal defaults for Accel/Decel (ID 75 set to 0 = Disable). Set Accel/Decel values by writing to ID 76 and 77 by using explicit metrics (accel/Decel values by an and accel to be acceled and acceled acceled
76 ⁽¹⁾	Accel value for Velocity mode	messaging (see Appendix D on <u>page 211</u>). Tag 75 must be set to $T =$ Enabled, for the values to be used.
77 ⁽¹⁾	Decel value for Velocity mode	
N/A	DriveEn	Enable the drive by turning tag on.

(1) You can also set these parameters by using MotionView software, General category>Velocity Mode Acceleration.

Kinetix 300 Drive ID Tag Numbers

Торіс	Page
Tag Number Descriptions	197
Index Base Addressing	210

Tag Number Descriptions

To change these parameters by using an Explicit Message you configure the message to target class 374. The instance corresponds to the ID tag number in <u>Table 78</u>. The attribute is defined by the <u>Drive Object Attributes</u> table on page 190.

IMPORTANT	Memory module writes are limited to 1,000,000 per device. Make sure that all
	writes targeted at the memory module are necessary and not done as part of a
	background or cyclic task.

										Motion	View P	age U	sed					I
e	Data Type	Access	Description	Value/Notes	level Top Level	Motor-Linear	General -Synchronous	General -Linear	EtherNet	EtherNet/IP (CIP)	0/1 letipiQ	U\I DOIBNA		Similarita	ດແນລຸກແບ	бишон	Monitor	saura
-	String	В	Drive identification string	See Table on page 84	×		<u> </u>											I
2	String	R/W	Drive symbolic name	Up to 20 user-defined characters	×		<u> </u>							 				I
m	String	В	Drive serial number	Unique number assigned to drive at the factory	×		<u> </u>							 				I
7	REAL	В	Actual measured motor velocity	in UU/sec										 				
∞	DINT	R/W	Negative Motion Polarity	Range: $0 = Positive$, $1 = Negative$			×	×										1
10	String	В	Motor ID	Motor serial number (for Allen-Bradley motor)	×	×												l
11	String	R	Motor model	Motor catalog number (for Allen-Bradley motor)	×	×							-					
12	String	R	Motor vendor	Allen-Bradley	×	×							-					
14	DINT	R	Hallcode index	Range: 05	×	×							-					
18	DINT	R	Motor moment of inertia, Jm	Range:00.1 Kg-m ²	×													
19	DINT	R	Motor voltage or back EMF constant, Ke	Range: 1500 V/K rpm	×								-					
20	DINT	R	Motor torque or force constant, Kt	Range: 0.0110 N•m/A	×								-					
21	DINT	В	Motor phase-to-phase inductance, Lm	Range: 0.1500 mH	×	×												1
22	DINT	В	Motor phase-to-phase resistance, Rm	Range: 0.01500 Ω	×	×												I
23	DINT	В	Motor max current (RMS)	Range: 0.550 A	×	×												1
24	DINT	В	Motor max velocity	Range: 50020,000 rpm	×	×	<u> </u>							 				I
25	DINT	В	Motor number of poles	Range: 2200	×													1
26	REAL	В	Encoder resolution	Range: 256 to (65536 x 12/Npoles) expressed in PPR	×													I
27	DINT	В	Nominal Motor terminal voltage	Range: 50800V	×	×												1
29	DINT	R/W	Enable switch function	0 = Inhibit only 1 = Run							×							
30	REAL	R/W	Continuous RMS current for motor selected	User may lower this value. This lets you trigger a motor current alarm. However, the drive will not limit the actual current to the motor. The actual RMS current limit to the motor is not configurable.			×	×										
32	REAL	R/W	Peak current limit for 8 kHz operation (based on motor selected)	User may lower this peak value to limit current to motor. Do not set below the RMS Current for motor (tag $\#30).$			×	×										

	stive?																	
	Monitor																	
	pnimoH																	
	ɓuixəpul																	
	Dynamics				×	Х	Х	×	×	Х	Х							
	Position Limits																Х	х
Used	Velocity Limits													Х	Х	Х		
r Page	0\l polanA	Х	Х															
nViev	0\l lstipiQ																	
Motic	EtherNet/IP (CIP)																	
	EtherNet																	
	General -Linear			Х														
	General -Synchronous			х														
	Motor-Linear																	
	Motor-Synchronous																	
	Top Level												×					
	Value/Notes	Range: Range: - X+X Amps/Volt X = drive peak output current/10	Range: -10,000+10,000 rpm/Volt	0 = Disabled 1 = Enabled	Range: 032767	Range: 032767	Range: 032767	Range: 016383	Range: 032767	Range: 020000	Range: -16+4	0 = No action 1 = Reset drive	t Range: 132767	P Range: 0100 rpm	t Range: 1010000 rpm	Range: -10000 + 10000 rpm	Range: 132767 encoder counts	e Range: 0.258000 ms
	Description	Analog input #1 current reference scale	Analog input #1 velocity reference scale	Motor thermal protection function:	Velocity loop proportional gain	Velocity loop integral gain	Position loop proportional gain	Position loop integral gain	Position loop differential gain	Position loop integral gain limit	Gains scaling coefficient	Drive reset	Network group ID. Allows the assignment of differen drives into logical groups.	Absolute value in user units/s below which the drive will set the Zero Speed Digital Output (if configured) and the VelocityStandstillStatus bit in the EtherNet/I Input Assembly.	Value in user units/s for the target velocity for which the drive will set the In-Speed Window Digital Outpu (if configured) and the VelocityLockStatus bit in the EtherNet/JP Input Assembly.	The range in user units/s around the At Speed for setting the In-Speed Window Digital Output (if configured) and the VelocityLockStatus bit in the EtherNet/JP Input Assembly.	Position error	The amount of time that the drive can be outside of the Position Error before the drive asserts an Excess Position Error Fault.
	Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Data Type	REAL	REAL	DINT	DINT	DINT	DINT	DINT	DINT	DINT	DINT	DINT	DINT	REAL	REAL	REAL	DINT	REAL
	9	35	36	39	44	45	46	47	48	49	51	53	57	58	59	60	61	62

										Motio	nView	Page	Used						
e	Data Type	Access	Description	Value/Notes	level Top Level	motor-synchronous Motor-Linear	General -Synchronous	General -Linear	EtherNet	EtherNet/IP (CIP)	0\l lstipiQ	0\l polanA	Velocity Limits	Position Limits	Dynamics	ɓuixəpul	gnimoH	Monitor	stivei
65	DINT	~	Digital inputs states	A1 input = Bit 0 A2 input = Bit 1 A3 input = Bit 3 B1 input = Bit 4 B2 input = Bit 4 B2 input = Bit 5 B3 input = Bit 7 C1 input = Bit 8 C2 input = Bit 9 C3 input = Bit 10 C4 input = Bit 11														×	
99	DINT	R/W	Digital outputs states. Writing to these variables sets/ resets digital outputs that have not been assigned to a special function.	0utput 1 = Bit0 0utput 2 = Bit 1 0utput 3 = Bit 2 0utput 4 = Bit 3														х	
67	DINT	R/W	Ethernet IP address	IP address changes at next powerup. 32 bit value.					×										
68	DINT	R/W	Ethernet IP NetMask	Mask changes at next powerup. 32 bit value.					×										
69	DINT	R/W	Ethernet Gateway IP address	Address changes at next powerup. 32 bit value.					×										
70	DINT	R/W	Use DHCP	0 = Manual 1 = Use DHCP service					Х										
71	REAL	Я	Analog Input AIN1 value	1/olte-														×	
73	REAL	Я	Measured Bus voltage															×	
74	REAL	~	Heatsink temperature	0 = Temperatures < 40 °C (104 °F) Actual heat sink temperature = Temperatures >40 °C (104 °F)														×	
75	DINT	R/W	Enable Accel/Decel function/limits for Velocity mode	0 = Disabled 1 = Enabled			×	×											
76	REAL	R/W	Accel value for Velocity mode	Range: 0.1500000 rpm/s			×	×											
77	REAL	R/W	Decel value for Velocity mode	Range: 0.1500000 rpm/s			×	×											
78	DINT	R/W	Reset fault configuration	0 = 0n activation of Enable/Inhibit input (A3) 1 = 0n deactivation of Enable/Inhibit input (A3)			×	×											
79	DINT	R/W	Master to system ratio (numerator)	Master counts range: -32767+32767			×	×											
80	DINT	R/W	Master to system ratio (denominator)	System counts range: 132767			Х	Х											
84	DINT	R/W	Configuration of the action-to-take when the hardware limit switches are asserted.	0 = Not used 1 = Disable and coast 2 = Ramped Decel and Disable							×								

0/I golenA × × × × × · · · · · · · · · · · · · ·	0/l polenA × × × ×	Image: state	Normalization Normalinstation Normalization Normal
× × × ×	× ×	Image: Second	x x
Image: Second	Image: Second	Image: Second	Image: Second
e: 010V e: 0100 mV e: -10,000+10,000 mV e: -10,000+10,000 mV units per seconds ² units per seconds ² units for a condor a	10V 100 mV 10,000+10,000 mV is per seconds ² is per sec	10V 10V 100 mV 000 + 10,000 mV er seconds ² of motor per user unit ses Ses Ses	mV mV +10,000 mV econds ² econds ² hotor per user unit botor per user unit
e: 0100 mV e: -10,000+10,000 mV e: -10,000+10,000 mV units per seconds ² units functor per user unit ts ts t	100 mV 10,000+10,000 mV s per seconds ² s and seconds ² s for the second secon	.100 mV 100 mV 000 + 10,000 mV er seconds ² er seconds ² er seconds ² ses ses	ImV +10,000 mV econds ² econds ² motor per user unit
e: -10,000 + 10,000 mV e: -10,000 mV e:	10,000+10,000 mV S per seconds ² S S ons of motor per user unit pulses	000+10,000 mV er seconds ² of motor per user unit Ses	conds ² econds ² motor per user unit 0 ms
units per seconds ² units durits fultions of motor per user unit ts der pulses	S per seconds ² Image: Conduct Seconds Seco Seconds Seconds Sec	er seconds ² of motor per user unit Ses	econds ² econds ² notor per user unit notor
units Units Unitions of motor per user unit ts ts ts der pulses	s ons of motor per user unit Denotes the set of the se	of motor per user unit X of motor per user unit X Ses X Ses X Ses X	notor per user unit x notor per user unit x x x
Iutions of motor per user unit X X ts X X ts X X der pulses X X	ons of motor per user unit X X X X X X X X X X X X X X X X X X X	of motor per user unit X of motor per user unit X	motor per user unit x x motor per user unit x x x x x x <t< td=""></t<>
ts s derpulses	pulses	Se5 1 1 1 1 Se5 1 1 1 1 1	
s der pulses	pulses	565 1 1 1 1 565 1 1 1 1 565 1 1 1 1	Subsection of the section of the sec
der pulses	pulses pulses	Ses	0ms
	pulses	Ses 565	0ms

										Motio	nView	Page L	lsed						I
e	Data Type	Access	Description	Value/Notes	ləvəl qoT	Motor-Jynchronous Motor-Linear	General -Synchronous	General -Linear	EtherNet	EtherNet/IP (CIP)	0\l lstipi0	0\l polanA	Velocity Limits	Position Limits	Dynamics	биіхәриј	бишон	Monitor	stinet
191	DINT	R/W	Input A3 de-bounce time	Range: 01000 ms							×								1
192	DINT	R/W	Input A4 de-bounce time	Range: 01000 ms							×								I
193	DINT	R/W	Input B1 de-bounce time	Range: 01000 ms							×								
194	DINT	R/W	Input B2 de-bounce time	Range: 01000 ms							×								ĺ
195	DINT	R/W	Input B3 de-bounce time	Range: 01000 ms							×								I
196	DINT	R/W	Input B4 de-bounce time	Range: 01000 ms							×								
197	DINT	R/W	Input C1 de-bounce time	Range: 01000 ms							×								I
198	DINT	R/W	Input C2 de-bounce time	Range: 01000 ms							Х								
199	DINT	R/W	Input C3 de-bounce time	Range: 0 1000 ms							×								
200	DINT	R/W	Input C4 de-bounce time in mS	Range: 0 1000							Х								
201	DINT	R/W	Programmable Output Function: OUT 1	0 = Not Assigned 1 = Zero Speed 2 = In Speed Window 3 = Current Limit 4 = Run time fault 5 = Brake 6 = Brake 7 = In position							×								
202	DINT	R/W	Programmable Output Function: OUT2	0 = Not Assigned 1 = Zero Speed 2 = In Speed Window 3 = Current Limit 4 = Run time fault 5 = Ready 6 = Brake 7 = In position							×								
203	DINT	R/W	Programmable Output Function: OUT3	0 = Not Assigned 1 = Zero Speed 2 = In Speed Window 3 = Current Limit 4 = Run time fault 5 = Ready 6 = Brake 7 = In position							×								

	stlue7																		
	Monitor				Х	Х	Х	Х	Х										
	pnimoH														Х	х		Х	Х
	биіхәриј																		
	Dynamics																		
	Position Limits									Х	Х	×	Х	×					
Used	Velocity Limits																		
Page	0\l polsnA																		
nView	0\l lstigiQ	Х																	
Motio	EtherNet/IP (CIP)																		
	EtherNet																		
	General -Linear																		
	General -Synchronous																		
	Motor-Linear																		
	Motor-Synchronous																		
	Top Level																		
	Value/Notes	0 = Not Assigned 1 = Zero Speed 2 = In Speed Window 3 = Current Limit 4 = Run time fault 5 = Ready 6 = Brake 7 = In position	Bit0 = Hall 1 Bit1 = Hall 2 Bit2 = Hall 3	Encoder counts	Encoder counts	User units	User units	User units	Encoder counts	e Encoder counts (positive)	Encoder counts (negative)	e 0 = Off 1 = Disable and Coast 2 = Ramped Decel and Disable	User units (positive)	User units (negative)	Range 010,000,000 UU per second ² .	Range: -32767+32767 user units.	Range: +/- 2,147,418,112 encoder counts.		Range: -10,000+10,000 UU/sec. 1.
	Description	Programmable Output Function: OUT4	Current hall code	Primary encoder current value	Registration position	Registration position	Target position	Actual position	Position error	The tolerance around the commanded position outsid	Fault when the Max Error Time is exceeded.	Off or On depending if software travel limits should b used.	If Soft Limits are On, the position that when reached,	the drive will assert a Software Overtravel fault.	Homing acceleration/deceleration rate	The new position of the motor after the homing sequence is complete. All subsequent absolute moves are taken relative to this new zero position.	Homing mode: Home Position Offset	For homing methods that use one velocity setting, thi tag is used as the velocity.	For homing methods that use two velocity settings (fast and slow), this tag is used as the slow velocity. Typically, this tag is used to creep to a homing position
	Access	R/W	Я	R	R	R	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Data Type		DINT	DINT	DINT	DINT	REAL	REAL	REAL	REAL	DINT	DINT	DINT	REAL	REAL	REAL	REAL	DINT	REAL	REAL
	9	204	205	206	207	208	209	210	211	216	217	218	219	220	227	228	229	230	231

										Moti	onView	v Page	Used	_					
e	Data Type	Access	Description	Value/Notes	ləvəl qoT	Motor-Synchronous	איטרטר-בווופלו	General -Linear General -Linear	EtherNet	EtherNet/IP (CIP)	0\l lstigiO	0\l polenA	Velocity Limits	Position Limits	Dynamics	buix əpul	рпітоН	Monitor	stive?
232	DINT	R/W	Defines the type of homing to be performed. See Table 59 on <u>page 115</u> .	See <u>Homing Category on page 113</u> .				-									Х		
234	DINT	R/W	The digital input that should be used as a home switch for appropriate homing method.	Do not assign to A1, A2, A3, or C3 as these inputs have predefined functions.													Х		ĺ
247	DINT	æ	Status register for the TL-Series absolute encoder and battery.	Bit 7 indicates battery level has fallen to 3.1V DC or less. Bit 6 indicates battery level has fallen to 2.5V DC or less and absolute data may not be valid.															
240	REAL	R/W	Pole pitch	Range: 2200 mm		X													
242	REAL	R/W	Linear speed	Range: 010 m/s															
243	REAL	R/W	Motor block mass	Range: 0 100 kg		Х													
244	REAL	R/W	Linear motor force constant, Kf	Range: 11000 N/A rms		Х													
245	REAL	R/W	Linear motor voltage or back EMF constant, Ke	Range: 1500V rms/m/s		Х													
246	REAL	R/W	Linear encoder resolution	Range: 0.4 40 µm		Х													
249	DINT	R/W	Datalink A for input assembly	User Defined Integer Data 0						х									
250	DINT	R/W	Datalink B for input assembly	UserDefinedIntegerData1						х									
251	DINT	R/W	Datalink C for input assembly	UserDefinedIntegerReal0						×									
252	DINT	R/W	Datalink D for input assembly	User Defined Integer Real 1						×									
253	DINT	R/W	Datalink A for output assembly	UserDefinedIntegerData0						×									
254	DINT	R/W	Datalink B for output assembly	UserDefinedIntegerData1						х									
255	DINT	R/W	Datalink C for output assembly	UserDefinedIntegerReal0						×									
256	DINT	R/W	Datalink D for output assembly	User Defined Integer Real 1						×									
264	DINT	R/W	TCP reply delay value	Maximum delay time before sending an acknowledgement to a TCP segment					×										
266	DINT	R/W	Sets the mode of operation for the drive	0 = Auto Tune 1 = EtherNet/IP External Reference 2 = Master Gearing 3 = Step and Direction 4 = Analog Velocity 5 = Analog Current 6 = Indexing			×	×											
267	DINT	R/W	Enable Auto Start index function for Indexing mode when drive becomes enabled	0 = Disable 1 = Enable												Х			

	stivei						
	Monitor						
	QnimoH						
	биіхәриј						
	Dynamics						
	Position Limits						
Used	Velocity Limits						
r Page	0\l polanA						
nView	0\l letigiO					×	×
Motio	EtherVet/IP (CIP)						
	EtherNet						
	General -Linear						
	General -Synchronous						
	Motor-Linear						
	Motor-Synchronous						
	ləvəl qoT						
	Value/Notes	0 to 1 transition = Executes indexing 1 to 0 transition = No effect on indexing	 Cycle this tag value between 0 and 1 before the time-out period is reached to prevent a watchdog time-out and fault. 	A value of 1 enables the watchdog mechanism.	of Range: 10 1000 ms	0 = Not Assigned 1 = Abort Index 2 = (Reserved) 3 = Start Index 4 = Define Home 5 = Abort Homing 6 = Start Homing 7 = Faut Reset 8 = Index Select 0 9 = Index Select 2 11 = Index Select 2 12 = Index Select 3	0 = Not Assigned 1 = Abort Index 2 = (Reserved) 3 = Start Index 4 = Define Home 5 = Abort Homing 6 = Start Homing 7 = Fault Reset 8 = Index Select 1 10 = Index Select 2 11 = Index Select 3 12 = Index Select 4
	Description	Upon transition from 0 to 1 the drive will begin executing index.	Value in this tag must change before time-out time reached, otherwise the fault action is initiated. Function can be used with EtherNet/IP explicit messaging control.	Enables the communication watchdog function. Function can be used with EtherNet/IP explicit messaging control.	Time-out value. Function to be used with EtherNet/I explicit messaging control. This tag sets the window time before the time-out occurs and the fault is generated.	Programmable input assignment for input A4	Programmable input assignment for input B1
	Access	R/W	×	R/W	R/W	R/W	R/W
	Data Type	DINT	DINT	DINT	DINT	DINT	DINT
	<u> </u>		269	270	271	624	625

	Faults			
	Monitor			
	pnimoH			
	биіхәриј			
	Dynamics			
	Position Limits			
Used	Velocity Limits			
Page	0\l polanA			
nView	0\l lɛវipiQ	×	×	×
Motio	EtherNet/IP (CIP)			
	EtherNet			
	General -Linear			
	General -Synchronous			
	Motor-Linear			
	Motor-Synchronous			
	ləvəl qoT			
	Value/Notes	0 = Nort Assigned 1 = Abort Index 2 = (Reserved) 3 = Start Index 4 = Define Home 5 = Abort Homing 6 = Start Homing 7 = Faut Reset 8 = Index Select 1 10 = Index Select 2 11 = Index Select 2 11 = Index Select 4	0 = Nor Assigned 1 = Abort Index 2 = (Reserved) 3 = Start Index 4 = Define Home 5 = Abort Homing 6 = Start Homing 7 = Faurt Reset 8 = Index Select 0 9 = Index Select 2 11 = Index Select 2 11 = Index Select 2 12 = Index Select 4	0 = Nort Assigned 1 = Abort Index 2 = (Reserved) 3 = Start Index 4 = Define Home 5 = Abort Homing 6 = Start Homing 7 = Faut Reset 8 = Index Select 1 10 = Index Select 2 11 = Index Select 2 11 = Index Select 4
	Description	Programmable input assignment for input B2	Programmable input assignment for input B3	Programmable input assignment for input B4
	Access	R/W	R,W	R/W
	Data Type	DINT	DINT	DINT
	e	626	627	628

									MotionV	liew Pa	ge Usec	-					
Data Type	Access	Description	Value/Notes	Top Level	Motor-Synchronous	General -Synchronous	General -Linear	EtherVet	EtherNet/IP (CIP)	0/I IbolenA	Velocity Limits	Position Limits	Dynamics	ɓuixəpul	pnimoH	Monitor	stivei
TNIQ	R/W	Programmable input assignment for input C1	0 = Not Assigned 1 = Abort Index 2 = (Reserved) 3 = Start Index 5 = Abort Homing 6 = Start Homing 6 = Start Homing 8 = Index Select 0 9 = Index Select 1 10 = Index Select 1 11 = Index Select 2 11 = Index Select 4						X								
TNIQ	R/W	Programmable input assignment for input C2	0 = Not Assigned 1 = Abort Index 2 = (Reserved) 3 = Start Index 4 = Define Home 5 = Abort Homing 6 = Start Homing 7 = Fault Reset 8 = Index Select 1 9 = Index Select 2 11 = Index Select 2 11 = Index Select 4						×								
TNIQ	R/W	Programmable input assignment for input C4	0 = Not Assigned 1 = Abort Index 2 = (Reserved) 3 = Start Index 4 = Define Home 5 = Abort Homing 6 = Start Homing 7 = Fault Reset 8 = Index Select 0 9 = Index Select 1 10 = Index Select 1 11 = Index Select 2 11 = Index Select 4						X								
DINT	M	Indexing starts from index specified	031											Х			
DINT	R	Aborts index in progress	Uses the AbortDecel parameter ($\#178$) to go to zero velocity														
DINT	ъ	Aborts homing in progress	Uses the AbortDecel parameter ($\#178$) to go to zero velocity			\square	\square										1

										Moti	onVie	w Pag	e Use	p						ı
£	Data Type	Access	Description	Value/Notes	ləvə Level	Motor-Synchronous		General -Linear General -Linear	EtherNet	EtherNet/IP (CIP)	0\l leiloid	0\l polanA	Velocity Limits	Position Limits	Dynamics	pnixəbnl	pnimoH	Monitor	Faults	1
637	DINT	Я	Index currently executing. This tag is valid only in Indexing mode.	031												×				I I
646	REAL	R/W	Thermal resistance, Rt	Range: 010000000 C/W		×														1
647	REAL	R/W	Thermal capacitance, Ct	Range: 01000000 W-s/C		×														1
650	REAL	R/W	Intermittent current	Range: 0100 A		×														I I
651	DINT	R/W	For the digital output that has been assigned to the brake function, this is the delay from when the drive is disabled to the time that motion is stopped and brake is engaged.	Motor brake engage delay, ms							~									1
652	DINT	R/W	For the digital output that has been assigned to the brake function, this is the delay from when the drive is enabled to the time that motion is allowed to begin (brake is released).	Motor brake release delay, ms							×									1
653	DINT	RO	Fault E-code	Same fault code that is displayed on the servo drive display															Х	1
654	DINT	0M	Reset ABS encoder error method	Writing a non-zero value to this field resets encoder detected faults on TL-Series (Bulletin TLY) motors without having to perform a power cycle once the failure condition is corrected.																1
668	DINT	M	Overtravel Input Polarity $^{\left(1\right)}$. Controls the active level of the exception on the overtravel inputs.	0 = Normally open input (active high) 1 = Normally closed input (active low)							×									I
667	DINT	M	Registration Arming $^{(1)}$ A 0 -to-1 transition of this parameter arms the registration capture if the drive is not currently in a registration based move.	When the registration digital input becomes asserted, the motor position is captured, copied into the Registered Position field in the Input Assembly, and the Registration Captured bit in the Input Assembly transitions from 0 to 1.																1
670	LNIQ	R/W	Enable rotary unwind.	0 = Disable 1 = Enable Rotary Unwind is designed only for these modes: Rotary Absolute Rotary biortest Path Rotary Positive Rotary Negative Rotary Negative Rotary Negative Rotary Negative Rotary Negative Rotary Negative Rotary unwind mode. Attempting to use these move options without having configured rotary unwind will result in a drive fault.			×													
671	REAL	R/W	User units per unwind.	Range: 01000000			×													I 1

Appendix C

Kinetix 300 Drive ID Tag Numbers

					F	-	-		Ň	otionVie	w Pag	e Used	Ī	ŀ	-	-	
	Data Type	Access	Description	Value/Notes	level Top Level	Motor-Jyncnronous Motor-Linear	General -Synchronous	General -Linear	EtherNet	EtherNet/IP (CIP) Digital I/O	0\l polanA	Velocity Limits	Position Limits	Dynamics	pnimoH	e	stlue7
	REAL	R/W	Current output clamp.	Range: 0400%			×										
ç	REAL	R/W	User units scaling.	Range: 11000000		×											
8	DINT	R/W	Measure units.	0 = μm 1 = m 2 = in.		×											
The h	ardware overt	travel configura	tion in the MotionView OnBoard software has been enhance	ed to allow the configuration of the inputs as normally open or normally	ly closed	l when t	his firm	ware is	no basu	ardware	revision	1B. The	e hardw	are revi	sion can	be four	d by

reading the last four digits of the Type field on the carton label.

Index Base Addressing

There are 11 tags per index and 32 indexes total.

Table 79 - Index Base Address

Index x = Base Address (B)	Index x = Base Address (B)
Index 0 = 272	Index 16 = 448
Index 1 = 283	Index 17 = 459
Index 2 = 294	Index 18 = 470
Index 3 = 305	Index 19 = 481
Index 4 = 316	Index 20 = 492
Index 5 = 327	Index 21 = 503
Index 6 = 338	Index 22 = 514
Index 7 = 349	Index 23 = 525
Index 8 = 360	Index 24 = 536
Index 9 = 371	Index 25 = 547
Index 10 = 382	Index 26 = 558
Index 11 = 393	Index 27 = 569
Index 12 = 404	Index 28 = 580
Index 13 = 415	Index 29 = 591
Index 14 = 426	Index 30 = 602
Index 15 = 437	Index 31 = 613

Table 80 - Indexing Tag Numbers

ID	Data Type	Access	Description	Value/Notes
B+0	DINT	R/W	Index move type of absolute, incremental, registration or blended incremental for index 031.	0 = Absolute 1 = Incremental 2 = Registered Absolute 3 = Registered Incremental 4 = Blended
B+1	DINT	R/W	Trapezoidal or S-curve move for index 031.	0 = Trapezoidal 1 = S-Curve
B+2	DINT	R/W	Maximum distance to move for index 031.	Distance (how far to move)
B+3	DINT	R/W	Relative distance to move after registration event for registration types for index 031.	Move distance after registration
B+4	DINT	R/W	Batch count. Number of times to repeat index before executing for index 031.	Range: 01000 counts
B+5	DINT	R/W	Dwell time to remain at current position before executing for index $0 \dots 31$	Range: 010,000 ms
B+6	DINT	R/W	Maximum velocity in UU while in motion for index 031	Velocity (speed when moving towards new position)
B+7	DINT	R/W	Maximum acceleration in UU while in motion for index 031	Acceleration (how quickly towards configured velocity)
B+8	DINT	R/W	Maximum deceleration in UU while in motion for index 031	Deceleration (how quickly towards zero velocity from configured velocity)
B+9	DINT	R/W	Next index to execute if action so indicates for index 031	Next Index (next index to execute if any)
B+10	DINT	R/W	Action to execute upon completing motion for index 031	0 - Stop 1 = Wait for Start 2 = Next Index

MicroLogix Explicit Messaging

You can use MicroLogix CIP Generic (MSG) instructions, also known as explicit messages, to read and write to the drive ID tags over the EtherNet/IP network. This capability is present in the MicroLogix 1100 Series B and MicroLogix 1400 controllers. You can write to read/write (R/W) ID tags, however, read (R) ID tags are read-only. For the complete list of Kinetix 300 ID tags, see <u>Appendix C</u>.

Торіс	Page
Explicit Messaging Data Types	211
Explicit Messaging Data Type Examples	212

Explicit Messaging Data Types

ID tags are designated as either DINT, REAL, or string data types. The MicroLogix controller uses long file elements, such as L12:0 for DINT data types, floating point file elements, such as F13:0, for Real data types, and string file elements, such as ST14:0 for string data types.

The attribute value is used to designate the data format as DINT, REAL, string, and the memory location as volatile or nonvolatile.

Table 81 - Data Type Attributes

Attribute	Format	Memory Stored In
0	DINT	Volatile
1	DINT	Nonvolatile
2	REAL	Volatile
3	REAL	Nonvolatile
4	String	Volatile
5	String	Nonvolatile

Explicit messaging lets DINT data types to be read into and written from long file elements directly and Real data types to be read into and written from floating point file elements directly. String data types must be read into integer file elements, such as N11:0, by the MSG instruction and then copied into a string file element. Similarly strings must be copied into integer file elements first before being written by the MSG instruction. **IMPORTANT** For each CIP Generic message (MSG) instruction, you must use both a unique message file element, for example MG9:0 and a unique extended routing information file element, for example RIX10:0. The routing information file element stores not only the path to the destination Kinetix 300 drive IP address, but also the specific Class/Instance/Attribute settings.

Explicit Messaging Data Type Examples

This section provides examples for DINT, REAL, and String data types.

DINT Data Type Examples

In this example, the instance decimal is ID tag 73 (bus voltage).

Figure 101 - Reading DINT from Volatile Memory

eneral Multition Sand Data Receive Data	
This Controller Channel: 1 [[Integral] Communication Command: CIP Generic Data Table Address [Receive]: L120 (Send): N/A Size in Bytes [Receive]: 4 (Send): N/A Target Device Message Timeout : 33 Local / Remote : Local MultiHop: Yes Extended Routing Info File(RDS): RtX10.0	Control Bits Ignore if timed out (TO): 0 Break Connection (BK): 0 Awaiting Execution (EW): 0 Error (ER): 0 Message done (DN): 0 Message Enabled (EN): 0
Service: Generic Get Attribute Single Service Code (hex): E Class (hex): 374 (dec): 884 Instance (hex): 49 (dec): 73 Attribute (hex): 0	Error Code(Hex): 0

In this example, the instance decimal is ID tag 232 (homing method).

Figure 102 - Writing DINT into Nonvolatile Memory

eneral MultiHop Send Data Receive Data	
This Controller Channet: 1 (Integral) Communication Command: CIP Generic Data Table Address (Receive): N/A (Send): L12:0 Size in Bytes (Receive): N/A (Send): 4 Target Device Message Timeout : 33 Local / Remote : Local MultiHop: Yes	Control Bits Ignore if timed out (TO) Break Connection (BK) Awaiting Execution (EW) Error (ER) Message done (DN) Message Transmitting (ST) Message Enabled (EN)
Extended Routing Info File(RIX): <u>RIX10:0</u> Service: <u>Generic Set Attribute Single</u> Service Code (hex): <u>10</u> Class (hex): <u>374</u> (dec): <u>884</u> Instance (hex): <u>E8</u> (dec): <u>232</u> Attribute (hex): <u>1</u> (dec): <u>1</u>	Error Code(Hex): 0

REAL Data Type Examples

In this example, the instance decimal is ID tag 183 (phase current).

Figure 103 - Reading REAL from Volatile Memory

eneral MultiHop Send Data Receive Data	
This Controller Channel: 1 [Integral] Communication Command: CIP Generic Data Table Address (Receive): F13:0 (Send): N/A Size in Bytes (Receive): 4 (Send): N/A	Control Bits Ignore if timed out (TO): 0 Break Connection (BK): 0 Awaiting Execution (EW): 0
Target Device Message Timeout : 33	Message Change Canadian (CN): 0 Message Transmitting (ST): 0 Message Enabled (EN): 0
Local / Remote : Local MultiHop: Yes Extended Routing Info File(RIX): RIX10:0	Error-
Class (hex): 374 (dec): 884 Instance (hex): 87 (dec): 183 Attribute (hex): 2 (dec): 2	Error Code(Hex): 0

In this example, the instance decimal is ID tag 58 (zero speed window).

Figure 104 - Writing REAL into Nonvolatile Memory

eneral MultiHop Send Data Receive Data	
This Controller Channet: 1 (Integral) Communication Command: CIP Generic Data Table Address (Receive): N/A Size in Bytes (Receive): N/A (Send): 4	Control Bits Ignore if timed out (TO): Break Connection (BK): Awaiting Execution (EW): Error (ER):
Target Device Message Timeout : 33	Message done (DN): [Message Transmitting (ST): [Message Enabled (EN): [
Local / Remote : Local MultiHop: Yes Extended Routing Info File(RIX): RIX10:0 Service: Generic Set Attribute Single Service Code (hext: 10	Error
Class (hex): 374 (dec): 884 Instance (hex): 3A (dec): 58	Error Code(Hex): 0

String Data Type Examples

In this example, the instance decimal is ID tag 3 (drive serial number).

Figure 105 - Reading String from Volatile Memory

THE OWNER	C ID2
Channel: 1 (Integral) Communication Command: CIP Generic	Ignore if timed out (TO): Break Connection (BK): Auxilian Excertion (BK):
Data Table Address (Receive): N11:0 (Send): N/A Size in Bytes (Receive): 82 (Send): N/A	Error (ER)
Message Timeout : 33	Message Transmitting (ST): [Message Transmitting (ST): [Message Enabled (EN): [
Local / Remote : Local MultiHop: Yes Extended Routing Info File(RIX): <u>RIX10:0</u>	Error
Service: Generic Get Attribute Single Service Code (hex): E Class (hex): 374 (dec): 884 Instance (hex): 3 (dec): 3	Error Code(Hex): 0

In this example, the instance decimal is ID tag 2 (drive symbolic name).

Figure 106 - Writing String into Nonvolatile Memory

MSG - Rung #2:0 - MG9:0	
General MultiHop Send Data Receive Data This Controller Channet: 1 (Integral) Communication Command: CIP Generic Data Table Address (Receive): N/A (Send): Size in Bytes (Receive): N/A (Send): Target Device Message Timeout : 33	Control Bits Ignore if timed out (TO): 0 Break Connection (BK): 0 Awaiting Execution (EW): 0 Error (ER): 0 Message done (DN): 0 Message Transmitting (ST): 0 Message Enabled (EN): 0
Local / Remote : Local MultiHop: Yes Extended Routing Info File(RIX): RI×10:0 Service: Generic Set Attribute Single Service Code (hex): 10 Class (hex): 374 (dec): 884 Instance (hex): 2 (dec): 2 Attribute (hex): 5 (dec): 5	Error Error Code(Hex): 0

Notes:
Overtravel Inputs

The Kinetix 300 drive has built-in hardware overtravel inputs. These digital inputs are positive and negative relative to the direction of movement on your axis. The overtravel limits are switches wired to the drive's inputs and mounted at the physical extremes (positive/negative) of your axis to indicate a no-movement condition for your axis.

Торіс	Page
Modes of Operation	217
Overtravel Hardware Inputs	218
Operation	219
Overtravel Fault Recovery	220

Modes of Operation

The operation of the Kinetix 300 drives overtravel limits is only applicable in Positioning mode. You can also use non-positioning modes, but they must work in conjunction with an external controller or PLC.

Table 82 - Overtravel Input Modes of Operation

Positioning Modes	Non-positioning Modes
Indexing mode	EtherNet/IP External Reference mode 0 = Current (torque) Reference 1 = Velocity Reference
EtherNet/IP External Reference mode 2 = Incremental Position 3 = Absolute Position 4 = Incremental Registration 5 = Absolute Registration	Analog Velocity Input mode
Jog Profiler mode	Analog Current Input mode

Figure 107 - Modes of Operation in MotionView Software

Auto Tune Auto Tune
Auto Tune
EtherNet/IP External Reference
Etreineur External Selerence
Master Gearing
t Step And Direction
Analog Velocity Input
ation Analog Current Input
er

Overtravel Hardware Inputs

Overtravel inputs are dedicated inputs and cannot be used for anything else.

Table 83 - Overtravel Pin Assignments

IOD Pin	Description	Signal
IOD-28	Positive overtravel input	IN_A2
IOD-27	Negative overtravel input	IN_A1

The overtravel inputs are edge triggered and once the overtravel limit is exceeded, the drive will perform the configured shutdown. Overtravel checking is configured via MotionView software under DriveIP >IO > Digital IO > Hard Limit Switches Action.

Overtravel inputs can be programed for normally open or normally closed operation. Use EtherNet/IP Explicit Messaging tag ID 668 to modify this parameter.

Figure 108 - Overtravel Configuration in MotionView Software

General	Description	Value
Communication	Input C2 Debounce Time	0
Ethernet EtherNet/IP (CIP)	Input C3 Debounce Time	0
	Input C4 Debounce Time	0
Digital IO	Hard Limit Switches Action	Not Assigned
Limits	Enable Switch Function	Not Assigned
Velocity Limits	Brake Engage Delay	Disable And Coast
Pagitian Limita	brake Eligage Delay	Decel And Disable

The default action is Not Assigned. These actions are configured via the pulldown menu:

- Disable and Coast immediately disables the drive upon detecting an overtravel condition. Disable and Coast is the only stopping action available when overtravel is tripped in Analog Velocity Mode.
- Decel and Disable uses the Abort Decel rate to stop the servo and then disable the drive. Decel and Disable is not available for Analog Velocity Mode.

Operation

If the drive is in a position operating mode, the overtravel limits are functional and will generate an error when the overtravel is reached. The drive will not allow axis movement in the direction of the overtravel limit until after the overtravel fault is reset. Only movement in the opposite direction is allowed.

If the drive is in a non-positioning mode of operation, the overtravel limits are functional and will generate an error when the overtravel is reached. However, it is up to the controller (via programming) to manage recovery and axis position after an overtravel fault. The drive will not limit axis movement once the fault has been cleared.

IMPORTANT	If an overtravel fault is reset and the drive is enabled while the axis is on or
	beyond the overtravel limit, a runaway condition could occur when using the
	overtravel limits in a non-positioning mode.

An overtravel fault registers when the drive is enabled and motion causes the axis to pass the overtravel switch. Once the overtravel is triggered, the drive performs the configured Hard Limit Switches Action and drive is disabled.

An example of this is if the drive was in EtherNet/IP drive mode, had an overtravel fault, and the overtravel fault is reset. If a value still exists in the CommandCurrentOrVelocity parameter of the drive Add-on Profile, and that value is in the incorrect direction, the axis will continue to move in that direction regardless of overtravel condition.

Figure 109 - Mot	ionView Monitor	Category
------------------	-----------------	----------

Description	Value	Units	General	1945
Motion			Enabled	-0
Actual Velocity	-0.0001192090567201	User Units / Sec	At Fault	•
Actual Position	-4763.821550101042	User Units	Undervoltage Drive is Foulted E06 disp	lavad
Actual Position (EC)	-1248807236	EC	Current Limit	layeu
Target Position	-4763.818161725998	User Units	Current Limit Folded	0
Target Position (EC)	-1248806348	EC	Regening	0
Registration Position	0.0	User Units	Motion	_
Registration Position (EC)	0	EC	Homing	0
Position Error	0.0000	User Units	Indexing	0
Position Error (EC)	0	EC	Homed	
ME counter	0	EC	In Position	٠
Drive Monitor			Motion Stack Full	0
Phase Current	0.00	А	Motion Stack Empty	
Bus Voltage	349	V	Motion Completed	٠
Heatsink Temperature	Less than 40	deg. C	Registration Triggered	-0
Analog IO			Motion Limits	
Analog Input	0.027	V	Positive Limit Switch	0
	Negative Swit	ch is shown as being	Negative Limit Switch	•
1		"ON" L	EtherNet/IP (CIP)	
Inputs		Outputs	Exclusive Owner	0
A1-A4 😑 🔿	• • 1-4 • •	000	Exclusive Owner Timeout	0
-B1-B4	0.0		User Watchdog Timeout	0
Shown above is the Neg OT input being high (ON) - C1-dais indicated the axis is on an OT switch			Set on Top	

Overtravel Fault Recovery

Follow these steps to recover from an overtravel fault condition while in a Positioning mode.

1. Reset the drive to clear the overtravel fault, either through MotionView software or via logic.

Typically, the overtravel input is still active after the reset, because the axis is still on the limit switch.

- 2. Enable the servo.
- 3. Move the axis off the limit switch.

The drive allows a position-based move in the direction opposite the limit switch. For example, if the axis is on a positive limit switch, it can move in a negative direction or if the axis is on a negative limit switch, it can move in a positive direction.

Once the axis is moved off the limit switch, the input goes low and the motion routine can begin again.

Follow these steps to recover from an overtravel fault condition while in a nonpositioning mode.

1. Change the motion command reference (velocity or current) to a value opposite the axis overtravel is on (set to a negative value if on the positive limit and vice-versa if on the negative limit).

IMPORTANT The drive will not limit motion in the direction of the overtravel when in a non-positioning mode, provided the overtravel input is still active and the initial overtravel fault has been reset.

2. Reset the drive to clear the overtravel fault, either through MotionView software or via logic.

Typically, the overtravel input is still active after the reset, because the axis is still on the limit switch.

3. Enable the servo.

IMPORTANT	With a non-zero command reference, motion begins immediately
	upon Enable when in a current or velocity mode of operation.

4. Verify that the user program code permits continued axis motion and manages the motion routine

History of Changes

This appendix summarizes the revisions to this manual. Reference this appendix if you need information to determine what changes have been made across multiple revisions. This may be especially useful if you are deciding to upgrade your hardware or software based on information added with previous revisions of this manual.

Table 84 - 2097-UM001B-EN-P, August 2010

Change

Updated Catalog Number Explanation input voltage and phase description.

Updated clearance diagram and added bullet statements to clarify how drive accessories and cables attached to the drive affect installation.

Updated I/O connector pins IOD-5 and IOD-6 to reserved.

Updated AC Input Power Connector Pinout table to include two additional configurations.

Converted Enable/Inhibit, Homing, and Indexing truth tables to timing diagrams.

Added the Master Gearing/Step and Direction Inputs section.

Added the Buffered Encoder Outputs section.

Added the Voltage Doubler Operation section.

Updated Motor Power Cable Compatibility table.

Updated Motor Feedback Cables for Specific Motor/Feedback Combinations table.

Updated Shunt Resistor Connections section with a graphic illustration of the shunt connections on the drive.

Added new chapter to update the existing MotionView software parameter descriptions and add screen captures to better illustrate how to use the configuration software. Additional information on indexing and homing is included.

Updated default drive IP address to 197.168.124.200.

Added Add-on Profiles section for users with RSLogix 5000 software, version 17.

Added Configure the Ethernet Port section for users with CompactLogix 1769-L23E controllers.

Updated Configure the Ethernet Module section for users with ControlLogix controllers.

Added Master Gearing Mode Examples and Configure Master Gearing Mode sections.

Updated the description for error code E26.

Added error code E39.

Kinetix 300 Drive Safe Torque-off Feature was converted to a chapter and includes updates throughout to clarify the safe torque-off functionality.

Updated the Kinetix 300 Drive Power Specifications tables.

Updated the Circuit Breaker/Fuse Specifications table.

Updated the Contactor Ratings specifications table.

Updated the Certifications specifications table.

Updated the AC Line Filter Specifications tables.

Table 84 - 2097-UM001B-EN-P, August 2010 (continued)

Change

Updated the Power Wiring Examples with proper voltage/phase ratings.

Updated the pinouts for Kinetix 300 Drive with TL-Series (TLY-A) Motors diagram.

Added System Block Diagrams section.

Added Input Assembly Instance table.

Added Output Assembly Instance table.

Added Output Assembly Examples section.

Updated Kinetix 300 Drive Tag Numbers table.

Added Index Base Addressing section.

Added appendix that provides a detailed description of the overtravel digital inputs.

Table 85 - 2097-UM001C-EN-P, March 2012

Change

Updated Important note.

Added Unwind, Negative motion polarity, and Current output clamp features to the General Category for synchronous motors.

Added General and Motor categories for linear motors.

Updated Digital input assignment list.

Added Index selects to the Indexing category.

Added unwind mode types; Rotary Absolute, Rotary Incremental, Rotary Shortest Path, Rotary Positive, Rotary Negative.

Updated Homed bit cleared events.

Added requirement for Indexing mode and its use with an incremental encoder.

Added Upgrade Firmware procedure.

Updated the Autotuning procedure including graphic.

Update Important note.

Added Configure Drive for Linear Motors and Stages section.

Added error code E23.

Updated error code E67.

Added error code E72.

Updated error code E92

Updated Wiring diagrams.

Added input and output schematics.

Added linear motor interconnect schematics.

Added direct drive stage schematics to MPAS linear stage interconnect.

Updated MPAR and MPAI electric cylinder cable compatibility.

Updated MotionComplete status bit

Updated Tag ID list to include linear motor tags and updated several tag IDs.

Updated footnote.

Updated Overtravel Hardware Inputs section

Numerics

120/240V single-phase input power 174 120V single-phase input power 173 1766-L32BXB 183 1766-L32BXBA 183 2097 master gearing example 184 2097 with LDAT-Series linear thruster 180 240/480V three-phase input power 175

A

about this publication 11 AC input power pinouts 40 actuators interconnect diagram **MPAI 181 MPAR 181 MPAS 180 TLAR 182** additional resources 12 add-on profiles 132 analog current 142, 148 analog I/O category 94 analog output 47 analog reference 46 analog velocity 142, 148, 183 apply power 138 auto tune 142

B

back-up power 50 pinouts 40 block diagrams power block diagram 186 voltage-doubler block diagram 187 bonding 27 EMI (ElectroMagnetic Interference) 26 high frequency energy 28 subpanels 28 brake currents 185 buffered encoder outputs 49 build your own cables 58

C

cables build your own cables 58 Ethernet cable length 82 length, CE 20 motor feedback 77 motor power 72 shield clamp 76 catalog numbers 16 category 3 requirements 160 stop category definitions 160 Œ compliance 17, 63 comply with CE 164 conformity 164 invalidate compliance 63 meet requirements 164 certification TÜV Rheinland 159 user responsibilities 160 circuit breaker selection 21 specifications 22 clamp 76 clean zone 29 clear faults 157 clearance requirements 25 communication category 91 configuration add-on profiles 132 controller properties 133 coordinated system time master 134 date and time tab 134 drive 136 drive mode explicit messaging 148 drive parameter tools changing 147 viewing 145 drive parameters 145 drive properties 137 Ethernet module ControlLogix 135 module properties 135 Ethernet port CompactLogix 134 module properties 134 EtherNet/IP 128 **DHCP 131** dvnamic address 131 static address 129 EtherNet/IP module 132 keypad input 126 master gearing 144 select drive mode 142 status indicators 127 test the axis 139 tune the axis 140 configuration system variables 145 connect Ethernet 82 external shunt resistor 81 feedback 77 I/0 77 motor shield clamp 76 connector designators 36 locations 36, 163

controller properties 133 coordinated system time master 134 current mode 183

D

date and time tab 134 digital I/O category 93 digital inputs 41 digital outputs 45 dirty zone 29 download program 137 drive object attributes 190 organizer, drive ID 84 properties 137 wiring BP connector 69 wiring IPD connector 70 wiring MP connector 71 wiring requirements 66 wiring STO connector 69 drive mode selection 142 drive parameter tools changing 147 viewing 145 dynamics category 97 servo loop diagram 98

Ε

EMC directive 164 motor ground termination 71 motor ground termination at motor 71 EMI (ElectroMagnetic Interference) bonding 26 EN 61508 160 EN 62061 160 enclosure requirements 20 sizing 23 error codes 154 Ethernet 50 cable length 82 cables RJ45 connector 82 category 91 pinouts 39 wiring 82 Ethernet module ControlLogix 135 Ethernet port CompactLogix 134 EtherNet/IP address 128 dvnamic address 131 static address 129 **DHCP 131** EtherNet/IP external reference 142

explicit messaging data types 211 DINT data 212 REAL data 213 string data 214

F

fault codes 154 faults category 100 feedback connections 77 feedback power supply 56 fuse selection 21 specifications 22

G

general category 87 generic TTL incremental 51 ground multiple subpanels 65 system to subpanel 64 grounded power configuration 59

Η

HF bonding 26 high frequency energy 28 homing category 113

I/O connections 77 I/O connector wiring 79 I/O specifications analog output 47 analog reference 46 back-up power 50 buffered encoder outputs 49 digital inputs 41 digital outputs 45 Ethernet 50 master gearing 48 pinouts 38 step and direction 48 **ID tag descriptions** 197 index base addressing 210 index configuration assembly instance 111 index select 101 indexing 142, 148 indexing category 101 input and output assembly 189 input assembly instance 192 tags 190

input power wiring 3-phase Delta 59 3-phase WYE 59 determine input power 58 grounded power configuration 59 single-phase 60 voltage doubler 60 single-phase amplifiers on 3-phase power 61, 62 input/output category 93 install drive accessories I/O terminal block 79 low-profile connector kits 80 shunt resistor 81 install your drive bonding subpanels 28 circuit breakers 21 fuse selection 21 HF bonding 26 system mounting requirements 20 transformer 21 interconnect diagrams 120/240V single-phase input power 174 120V single-phase input power 173 2097 master gearing example 184 2097 with LDL-series and LDC-series linear motor 179 2097 with MicroLogix 183 2097 with MPAI actuator 181 2097 with MPAR actuator 181 2097 with MPAS actuator 180 2097 with MPL/MPM/MPF/MPS motor 176 2097 with TLAR actuator 182 2097 with TLY motor 178 240/480V three-phase input power 175 notes 172 shunt resistor 175 ISO 13849-1 CAT 3 requirements 160 stop category definitions 160

K

keypad input 126

L

LDAT 180 limits category 95 linear motor database 86 linear motors interconnect diagram LDL-series and LDC-series 179 low profile connector kits wiring 80 low voltage directive 164

Μ

master gearing 48, 142, 144, 148, 184 examples 143 MicroLogix diagrams 183 mode analog velocity 183 current 183 master gearing 48 step and direction 183 monitor category 99 MotionView software analog I/O category 94 communication category 91 configuration 83 digital I/O category 93 drive organizer 84 dynamics category 97 Ethernet category 91 faults category 100 general category 87 homing category 113 absolute homing 115 home offset 116 home to marker 116 homing firmware algorithm 117 homing method 23 119 homing method 25 120 homing method 27 120 homing method 29 121 homing method 33 122 homing method 34 123 homing method 35 123 homing methods 113 homing methods 7...14 118 homing switch 116 immediate homing 115 indexing category 101 abort index 109 absolute 103 action parameter 108 next index 108 stop 108 wait for start 108 blended 104 current 107 explicit messaging 110 incremental 103 index configuration assembly instance 111 registration distance 103 reset index 109 rotary absolute 104 rotary incremental 105 rotary negative 106 rotary positive 106 rotary shortest path 105 start index 109 input/output category 93 limits category 95 linear motor database 86 monitor category 99 motor category 84 motor database 85 position limits category 96 tools category 98 velocity limits category 95 motor category 84 motor database 85

motor feedback pinouts 39 specifications general 51 thermostat 52 wiring 77 motor power pinouts 40 wiring 72 motors brake currents 185 feedback pinouts 78 ground termination 71 interconnect diagram MPL/MPM/MPF/MPS 176 TLY 178 power wiring 3-phase and brake 74 3-phase only 73 TL-Series 72 shield clamp wiring 76 mount Kinetix 300 drive 34

Ν

noise 29

0

output assembly examples 195 incremental examples 196 instance 194 tags 193 velocity examples 196 overtravels dedicated inputs 218 fault recovery 220 modes of operation 217 operation 219

Ρ

panel requirements 20 PFD and PFH data 162 **PFD and PFH definition** 162 pinouts AC input power (IPD) 40 back-up power (BP) 40 Ethernet (Port 1) 39 I/O (IOD) 38 motor feedback (MF) 39 motor feedback connector 78 motor power (MP) 40 safe torque-off (STO) 37 shunt resistor and DC bus (BC) 40 PL 160 position limits category 96 power block diagram 186 power dissipation specifications 24 power supply, feedback 56 power up 138 proof tests 161 publications, related 12

R

related publications 12 requirements clearance 25 RJ45 Ethernet connector 82 route power and signal wiring 58 RSLogix 5000 software 132

S

safe torque-off bypass 166 connector location 163 operation 161, 166 PFD and PFH data 162 PFD and PFH definition 162 pinouts 37 proof tests 161 specifications 168 troubleshooting 162 wiring diagram 167 wiring requirements 165 safety products catalog 167 select drive mode 142 servo loop diagram 98 shield clamp 76 shunt resistor 32, 33 interconnect diagram 175 wiring requirements 67 shunt resistor and DC bus pinouts 40 shunt/DC bus connector 81 SICK-Stegmann 51 software MotionView 84 RSLogix 5000 132 specifications analog output 47 analog reference inputs 46 back-up power 50 buffered encoder outputs 49 circut breaker 22 digital inputs 41 digital outputs 45 Ethernet 50 feedback power supply 56 fuse 22 master gearing 48 motor feedback 51 generic TTL 54 SICK-Stegmann 53

. . .

226

Tamagawa 55 motor thermostat interface 52 power dissipation 24 safe torque-off 168 step and direction 48 status indicators 127 step and direction 48, 142, 148, 183 system block diagrams power block diagram 186 voltage-doubler block diagram 187 system mounting requirements 20 system overview 14 diagram 15

Т

Tamagawa 51 test the axis 139 tools category 98 training 11 transformer sizing 21 troubleshooting 154 clear faults 157 error code E39 162 error codes 154 safe torque-off 162 tune the axis 140 servo loop diagram 98

V

velocity limits category 95 velocity mode 183 voltage doubler block diagram 187 operation 60 power diagram 173

W

who should use this manual 11 wiring build your own cables 58 diagram, safe torque-off 167 drive BP connector 69 IPD connector 70 MP connector 71 STO connector 69 Ethernet connections 82 grounded power configuration 59 grounding drive 64 guidelines 68 I/O connector 79 input power determine type 58 low profile connectors 80 master gearing 184 motor cable shield clamp 76 motor feedback 77 motor power 72, 73, 74 requirements 57, 165 drive 66 shunt resistor 67 route power and signal wiring 58 shunt resistor 81

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products. At <u>http://www.rockwellautomation.com/support</u>, you can find technical manuals, technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools. You can also visit our Knowledgebase at <u>http://www.rockwellautomation.com/knowledgebase</u> for FAQs, technical information, support chat and forums, software updates, and to sign up for product notification updates.

For an additional level of technical phone support for installation, configuration, and troubleshooting, we offer TechConnectSM support programs. For more information, contact your local distributor or Rockwell Automation representative, or visit <u>http://www.rockwellautomation.com/support/</u>.

Installation Assistance

If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual. You can contact Customer Support for initial help in getting your product up and running.

United States or Canada	1.440.646.3434
Outside United States or Canada	Use the <u>Worldwide Locator</u> at <u>http://www.rockwellautomation.com/support/americas/phone_en.html</u> , or contact your local Rockwell Automation representative.

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

United States	Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process.
Outside United States	Please contact your local Rockwell Automation representative for the return procedure.

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication <u>RA-DU002</u>, available at <u>http://www.rockwellautomation.com/literature/</u>.

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444 Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640 Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Kinetix 300 EtherNet/IP Indexing Servo Drives

User Manual